
BACHELOR THESIS

Filip Štědronský

A decentralized file synchronization tool

Department of Applied Mathematics

Supervisor of the bachelor thesis: Mgr. Martin Mareš, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2017

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

ii

To Medvěd, my supervisor, a great friend and one of the best teachers I know.
Someone who has way more answers than one person should. Whenever I en-
counter a problem from pretty much any field, the first subconscious impulse
usually is: “Let’s ask Medvěd, he will figure something out.” But I learn to resist
this impulse and instead try to acquire some of the tricks of his trade – relentless
curiosity being one of the most important. Do not stop with a half-baked kinda-
sorta answer. Think things through. Experiment. Poke. Change assumptions.
Ask nagging questions.

To Karry, one of the few close friends I have ever had. An endless source
of amazement, sometimes rumoured to have supernatural powers. She actually
managed to get two master’s degress almost faster than I will (hopefully) get my
bachelor’s! An inspiration to dare do (not try to do, simply do) more seemingly
impossible things. You have made my life better in more ways than you can
imagine.

To my dad, who is always supportive, even though he often thinks I’m crazy.
To all the random happenstances of evolution that gave us the ability to write

bachelor theses and do a lot of other interesting stuff.

iii

iv

Title: A decentralized file synchronization tool

Author: Filip Štědronský

Department: Department of Applied Mathematics

Supervisor: Mgr. Martin Mareš, Ph.D., Department of Applied Mathematics

Abstract: We explore the problem of file synchronization, with the goal of im-
proving on the efficiency, scalability, robustness, flexibility and security of current
file synchronization tools. We solve several important subproblems that may help
this, especially in the areas of filesystem change detection (both online and of-
fline) and peer-to-peer synchronization of file metadata. We show techniques to
make scanning a file system for changes faster and more reliable. We extend the
Linux kernel’s ‘fanotify‘ filesystem change notification API to report more events,
especially renames. We present several original solutions to the set reconciliation
problem and its variants and apply them to metadata synchronization.

Keywords: file synchronization set reconciliation fanotify

v

vi

Contents

Introduction 3

1 Change Detection 7
1.1 Offline Change Detection . 8

1.1.1 The anatomy of linux filesystems 8
1.1.2 Change detection in a single file 10
1.1.3 Scanning a single directory 11
1.1.4 Identifying inodes . 12
1.1.5 Scanning a Directory Tree 15

1.2 Online Change Detection . 18
1.2.1 Inotify . 18
1.2.2 Fanotify . 19
1.2.3 The FAN MODIFY DIR kernel patch 20
1.2.4 Amir Goldstein’s fanotify patches 22

2 Metadata Synchronization 25
2.1 Metadata Model . 25

2.1.1 Detailed metadata structure 26
2.1.2 Versioning and conflict resolution 27
2.1.3 Alternative versioning: vector clocks 30
2.1.4 Working versions . 31
2.1.5 Placeholder inodes . 31

2.2 The Set Reconciliation Problem 32
2.2.1 Divide and conquer . 33
2.2.2 Divide and conquer with pruning 37

2.3 Per-Origin Sequential Streams . 42
2.3.1 The problem with sequence numbers 44

3 Content Synchronization 47
3.1 The Rsync Algorithm . 47
3.2 Set Reconciliation Based Methods 48
3.3 Filesystem Access . 49

4 Implementation 51
4.1 Metadata Storage . 51
4.2 Basic Structure . 52

Conclusion 53

List of Abbreviations 59

A Attachments 61

1

2

Introduction
This thesis describes the design and implementation of a decentralized file syn-
chronization tool called Filoco1. Filoco intends to be an alternative to commercial
tools like Dropbox or Google Drive but one specifically tailored to advanced users,
computer enthusiasts, matfyzák’s2, the paranoid and everyone else with specific
needs not met by mainstream tools.

A prototypical Filoco user has a laptop, a backup laptop, a home computer,
a work computer, a bedroom computer, several phones and tablets, 8 terabytes’
worth of external hard drives, a home server, a NAS, and a VPS. A prototypical
Filoco user has on the order of a few million files scattered across all these places:
software, music, movies, books, audiobooks, notes, scripts, configuration files. . .

At different times, they need to use the same files on different devices. They
usually transfer them between storage locations on an as-needed basis using ad-
hoc methods such as thumb drives, rsync, scp, e-mail, personal git repositories,
a tmp directory on their web server. . . This leads to several copies of each file,
some of them temporary, some of them serving as backups, not all of them kept
regularly up to date.

With such a setup, it is easy to lose track of all the places where a file is
stored, let alone which of these places contains the current version. It is also easy
to get to situations where you need a specific file, which is currently only stored
for example on your home computer (currently turned off and far away) because
you forgot to copy it to a server.

File synchronization tools try to alleviate these issues by automatically copy-
ing files between machines and keeping these copies up-to-date. However, most
common synchronization tools have at least some of the following limitations,
which make them less suitable for the user group described:

• These tools usually try to sync everything everywhere. This is a problem
for users that have much more data in total than any single one of their
computers or disks can hold.
• They often have limited scalability, especially with regard to the total num-

ber of files. There are many technical reasons for this that will be discussed
in further chapters.
• They often require using proprietary software and/or cloud services (where

files are often stored unencrypted). This can be hard to accept for peo-
ple with a bit of healthy mistrust and paranoia or anyone unhappy about
sharing their data with American three-letter agencies.
• Synchronization often must be performed via a centralized server in the

cloud, even when devices are able to communicate directly. This causes
problems if one wants for example to synchronize their phone with their
laptop while travelling, with only a slow and/or expensive mobile internet
connection available.
• It is usually not possible to use external drives as synchronization replicas.

1Short for File Locomotive (because it pulls your files around).
2The term matfyzák is colloquially used to refer not only to the students of Faculty of

Mathematics and Physics but also to anyone bearing the personality traits typical for such
students. In that sense, one does not become a matfyzák, one is born one. [1]

3

A more detailed survery of existing tools is given in chapter ??.
Filoco tries to overcome these limitations. Its basic task is to synchronize data

among a set of stores. A store is simply a directory containing ordinary files plus
some additional Filoco-specific metadata. A store can be physically located on
a desktop computer, mobile device, server, external drive or anything else with
a file system. We call all the stores that are synchronized among each other a
realm.

Filoco follows the philosophy of global metadata, distributed data. This means
that while each store has copies of only some files, it has information about all
the files in the realm. This metadata describes a single logical directory tree
containing all the files in the realm that is consistent across all the stores.

The metadata also contains information about where each file is physically
stored (an in what version). Thus that when a file is not available locally, Filoco
knows where to fetch it from. If this is an offline store (e.g. an external drive or
a powered down laptop), Filoco can ask the user to connect it and/or turn it on.

Upon request, any two stores can be synchronized, either via network or locally
if the other is on an external drive connected to the same computer. All stores
are equal, there is no special master store. The user can configure which files
should be kept by which stores.

Apart from the basic concept outlined above, Filoco has the following design
goals (in order of importance):

• Scalability and efficiency. We shall optimize specifically for the common
case when the user has a lot of data, most of which changes only infre-
quently. Small incremental updates should be fast even when the total
number of files is large (a few million). Ideally, the time complexity of most
operations should not depend on the total number of files at all, only on
the number/size of changed/affected files. This will not always be possible
but we should try to get close to this ideal.

• Robustness. This means not only that it should not eat your data but
also resilience to things like interrupted transfers, power failures or race
conditions with other processes accessing the files managed by Filoco.

• Flexibility. Rather than a one-size-fits-all solution, Filoco should be a frame-
work that each user can adapt to fit their unique needs and workflows. It
should be both configurable and easy to integrate with shell scripts. Where
possible, the user should be put in control. We should make as little policy
decisions as possible.

• Security. This of course includes transport encryption and mutual authen-
tication during network communication (nowadays taken for granted). It
also includes the ability for designating untrusted stores, which (1) only
store and exchange encrypted data (and metadata), without ever having
access to the cleartext, (2) can only relay updates made by trusted stores
(and cryptographically signed by them), not make their own changes to the
data. Any (meta)data received from and untrusted store must be crypto-
graphically verified to have been originally created by a trusted store.
Otherwise, untrusted stores should be able to participate in normal synchro-
nization, exchanging encrypted (meta)data with other stores, both trusted

4

and untrusted. This exchange should ideally be as efficient as (or close to)
the unencrypted exchange between two trusted stores, including efficient
incremental updates to encrypted files if possible (although this seems like
a hard problem).
This would allow using any untrustworthy cheap cloud storage provider
for additional storage, or as an intermediary for exchanging data between
nodes behind NAT. The untrusted store will not be able to read nor modify
your data. The only damage it can do is to delete your data, which can be
alleviated by redundant storage on different stores.

Explicit non-goals include fancy GUIs and beginner-friendliness. Users are
expected to have at least a basic understanding of Filoco’s internals to make full
use of it. The same is true for example for git.

Filoco runs only on Linux and there are currently no plans to support other
operating systems (with the possible exception of Android, which is basically
Linux).

5

6

1. Change Detection
The purpose of a file synchronization tool is simple: whenever a change to the
synchronized tree is made in one replica, transfer the change to the other repli-
cas and apply it there. From this stems a natural need for a way of detecting
filesystem changes efficiently.

There are two broad categories of filesystem change detection methods.
Offline change detection consists of actively comparing the filesystem state

to a known previous state. The detection must be explicitly initiated by the
application at an arbitrarily chosen time, e.g. regulary (every day at midnight)
or upon user request. It can be considered a form of active polling.

But polling is the lesser evil here. The real problem is that the comparison
process usually involves recursively scanning the entire directory tree (or a sub-
tree), saving the results and comparing them with the previous scan. This can
be quite slow on larger trees, wherefore it cannot be done very often, leading to
an increase in change detection latency.

Online change detection, on the other hand, relies on specific operating
system features that allow applications to be notified of filesystem changes im-
mediately as they happen. Instead of polling, the application just passively waits
for change notifications. However, the notification systems often have many lim-
itations, issues and idiosyncrasies. For example they fail to report some kinds of
operations (e.g. renames) or operations done in specific ways (e.g. writes to a file
via a memory mapping).

Even with a perfect notification system, we face a serious issue. The applica-
tion monitoring the notifications must be running at all times. Notifications of
filesystem changes made when the application is not running will be missed and
forever lost to the application.

Due to both these issues, the application’s idea about the state of the filesys-
tem can diverge from reality over time. The only way of fixing this is with a full
rescan of the directory tree. Thus while being efficient, online change detection is
usually not very robust. In contrast, offline change detection is by definition 100%
reliable, because it looks at the actual current state of the file system and updates
internal structures accordingly. Actually, that is true only if the filesystem is not
changed during the scan, as we shall see later.

There also emerges an interesting middle ground between these two extremes,
which we shall dub filesystem-based change detection. Some filesystems
can store some data about their change history as a part of their on-disk data
stractures and offer operations that query these structures to return information
about filesystem changes. Two examples of this are the btrfs find-new and
send-receive mechanisms.

This last category seems to offer the best of both worlds: we get reliably and
efficiently informed of all changes. Often the comparison operation is fast enough
to be run very frequently, for example every minute, effectively replacing online
detection. The obvious disadvantages are that most filesystems do not support
such operations and the need for a solution specifically tailored to each filesystem
that does support change detection (there is no generic API, at least on Linux).

The next sections will survey various ways of doing each kind of change detec-

7

tion on Linux. Even methods that are not inherently filesystem-based will often
depend on the idiosynchracies of different filesystem types. In such cases, we will
consider primarily ext4 and btrfs, two commonly used Linux filesystems, while
remarking how other file systems may differ. For simplicity, we shall also only
discuss change detection in trees contrained to a single filesystem volume (i.e., not
containing any mount points within them), therefore also to a single filesystem
type.

1.1 Offline Change Detection

1.1.1 The anatomy of linux filesystems
Before diving into change detection, we have to understand a bit about the struc-
ture of Linux filesystems and filesystem APIs. If terms like inode, hardlink, file
descriptor, and openat are familiar to you, you can safely skip this section. Most
of what is being said here applies to all Unix-based operating systems, however,
some details might be specific to Linux.

Inodes and links

The basic unit of a Linux filesystem is an inode. An inode represents one filesys-
tem object: e.g. a file, a directory, or a symbolic link. There are a few more
esoteric inode types, which we shall mostly ignore (so-called special files: sockets,
named pipes and device nodes).

The inode serves as a logical identifier for the given filesystem object. It also
holds most of its metadata: size, permissions, last modification time. However,
an inode does not store its own name.

The names are instead stored in structures belonging to the parent directory.
A directory can be thought of as special kind of file whose content is a mapping
from names to inodes of its direct children. The elements of this mapping are
called directory entries.

This implies that an inode can have multiple names if multiple directory
entries reference the same inode. These names are usually called hardlinks or
simply links to the given inode.

However, for practical reasons, multiple hardlinks to a directory are not al-
lowed. Thus while the filesystem structure is a DAG rather than a tree, directo-
ries form a proper tree. Also, unlike all other kinds of inodes, directories store a
reference to their parent (as a special directory entry called “..”).

This explains many otherwise perplexing (especially for newcomers to the
Unix world) facts:

• Perplexing fact #1: The syscall used to delete a file is called unlink.
Explanation: It does not in fact delete a file (inode), but merely removes
one link to it. Only when all links to an inode are removed, it is deleted.

• Perplexing fact #2: It is possible to delete a file that is opened by a
process. That process can happily continue using the file.

8

Explanation: Inodes in kernel are reference counted. Only when all in-
kernel references to the inode are gone and the inode has no links, it is
physically deleted.

• Perplexing fact #3: To rename or delete a file, you do not need write
permissions (or in fact, any permissions) to that file, only to the parent
directory.
Explanation: These operations do not touch the file inode at all, they
change only the parent directory contents (by adding/removing directory
entries).

• Perplexing fact #4: Renaming a file updates the last modification time
of the parent directory, not the file.
Explanation: Same as above.

We should also clarify that the term inode is actually a little overloaded. It
can mean at least three related but distinct things:

• A purely logical concept that helps us to talk about filesystem structure
and behaviour.
• A kernel in-memory structure (struct inode) that identifies a filesystem

object and holds its metadata. These structures are kept in memory as a
part of the inode cache to speed up file access.
• An filesystem-specific on-disk data structure used to hold file object meta-

data and usually also information about the location of the file’s data blocks
on the disk. However, some filesystems do not internally have any concept
of inodes, especially non-Unix filesystem like FAT.

Each inode (in all the three senses) has a unique (within the scope of a single
filesystem volume) identifier called the inode number (ino for short) that can
be read from userspace.

Filesystem access syscalls

Most filesystem syscalls take string paths as their arguments. The inode corre-
sponding to the path is found in the kernel using a process called path resolu-
tion. The kernel starts at the root inode and for each component of the path
walks down the corresponding directory entry. This process is inherently non-
atomic and if files are renamed during path resolution, you might get unexpected
results. [2]

The most important syscalls include:

• lstat(path): resolve path into an inode and return a structure containing
its metadata. Among other things, it contains: type (file/directory/etc.),
size, last modification time and inode number.
• unlink("dir/name"): resolve dir into an inode, which has to be an existing

directory, and remove the directory entry name from it. name cannot be a
directory.
• rmdir("dir/name"): like unlink but removes a directory, which must be

empty.

9

• mkdir("dir/name"): create a new directory inode and link it to dir as
name.
• rename("orig-dir/orig-name", "new-dir/new-name"): resolve orig-dir and

new-dir to inodes. Then perform the following atomically: remove the orig-
name directory entry from orig-dir and create a new new-name directory
entry in new-dir that refers to the same inode as orig-name did. If there
was already a new-name entry in new-dir, replace it atomically (such that
there is not gap during the rename when new-name does not exist).
• link(orig-path, "new-dir/new-name"): create a new hardlink to an existing

inode. Unlike rename, this does not allow overwriting the target name if it
already exists.

When desiring to access the content of inodes (e.g. read/write a file or list a
directory), you must first open the inode with an open(path, flags) syscall. open
resolves path into an inode and creates an open file description (OFD, struct
file) structure in the kernel, which holds information about the open file like
the current seek position or whether it was opened read only. The OFD is tied
to the inode so that it points always to the same inode even if the file is renamed
or unlinked while it is opened.

The application gets returned a file descriptor, a small integer that is used
to refer to the OFD in all subsequent operations on the opened file. The most
common operations are read, write and close, with the obvious meanings, and
fstat, which does a lstat on the file’s inode without any path resolution.

One can also open a directory and obtain a file descriptor referring to it.
Apart from listing directory contents, this file descriptor can be used as an an-
chor for path resolution. To this end, Linux offers so-called at-syscalls (openat,
renameat, etc.), that instead of one path argument take two arguments: a direc-
tory file descriptor and a path relative to that directory. Such syscalls start path
resolution not at the root but at the inode referenced by the file descriptor. Thus
userspace applications can use directory file descriptors as “pointers to inodes”.
This will later prove crucial in elliminating many race conditions.

1.1.2 Change detection in a single file
Let’s start off with something trivial: detecting changes in a single file. First
we need to decide what to store as internal state. Against that internal state we
shall be comparing the file upon the next scan. One option is to store a checksum
(e.g. MD5) of the file’s content. However, this makes scans rather slow, as they
have to read the complete contents of each file. This is unfortunate as today’s
file collections often contain many large files that rarely ever change (e.g. audio
and video files).

A more viable alternative takes inspiration from ‘quick check’ algorithm used
by the famous rsync file transfer program. [3] It consists of storing the size and
last modification time (mtime) of each file and comparing those. This may be
unreliable for several reasons:

• It is possible to change mtime from userspace (possibly to an earlier value)
and some applications do so.
• mtime might not be updated if a power failure happens during write.

10

• mtime updates might be delayed for writes made via a memory mapping.
• While most modern file systems store mtimes with at least microsecond

granularity, some older file systems store mtimes with only second granu-
larity. This means that if the file was updated after we scanned it but in the
same second, we wouldn’t notice it during next scan. We can compensate
for this in several ways: for example if we get an mtime that is less than
two seconds in the past, we wait for a while and retry.

Most of these problems should be fairly unlikely or infrequent and the massive
success of rsync attests that this approach is good enough for most practical uses.

Moreover, size and mtime can be acquired atomically while computing check-
sums might give inconsistent results if the file is being concurrently updated. We
can still store checksums for consistency checking purposes but it is sufficient to
update them only when the (size, mtime) tuple changes. And we do not even have
to recalculate the checksums every time a file is changed. Instead, we can simply
remember that a file has pending changes and delay actual checksum calculations
to make them less frequent. This is discussed in sec. 2.1.4.

1.1.3 Scanning a single directory
For a single directory, we can simply store a mapping from names to (size, mtime)
tuples as the state.

To read a directory, an application calls the getdents syscall (usually through
the readdir wrapper from the standard C library), passing it a directory file
dectriptor and a buffer. The kernel fills the buffer with directory entries (each
consisting of a name, inode number and usually the type of the inode). When
the contents of the directory do not fit into the buffer, subsequent calls return
additional entries.

We can hit a race condition in several places if entries in the directory are
renamed during scanning:

• Between two calls to getdents. The directory inode is locked for the dura-
tion of the getdents so everything returned by one call should be consistent.
However, a rename may happen between two getdents calls. In that case,
it is not defined whether we will see the old name, the new name, both
or neither. [4] The last case is particulary unpleasant because we might
mistakenly mark a renamed file as deleted.
This can be mitigated by using a buffer large enough to hold all the directory
entries. This could be achieved for example by doubling the buffer size until
we manage to read everything in one go. However, trying to do this for large
directories could keep the inode locked for unnecesary long.

• Between getdents and lstat (or similar). Because getdents returns only
limited information about a file, we need to call lstat for each entry to
find size and mtime. Between those to calls, the entry might get renamed
(causing lstat to fail) or replaced (causing it to return a different inode).
Both cases can be detected (the latter by comparing inode number from
lstat with inode number from getdents, which is unreliable because inode
numbers can be reused).

11

However, instead of problematic workarounds for specific issues, there is one
simple solution to all directory-reading race conditions. The key is that direc-
tories have mtime, just like files. The directory mtime is, as you would expect,
the last time a directory entry was added to or removed from the directory. The
solution is now obvious: we remember the directory’s mtime at the beginning of
the scan. After we have enumerated all the directory entries, we once again look
at the mtime. If it is different, the directory has been concurrently updated and
the scan results may be unreliable. In such case, we simply throw them away
and retry after a delay. The same caveats about mtime granularity apply as were
mentioned above for files.

There is one other problem: when a file is renamed, it would be detected as
deletion of the original file and creation of a new on with the same content (or
just similar, if it was both renamed and changed between scans). Unless the data
synchonization algorithm can reuse blocks from other files for delta transfers, this
would force retransmission of the whole file.

The problem gets even more serious when renaming a directory, perhaps one
containing a large number of files and subdirectories. Unless we can detect that
this is the same directory, we would have to recreate the whole subtree under
the new name on the target side instead of just renaming the directory that is
already there.

To correctly detect renames, we would need a way to detect that a name we
currently encountered during the scan refers an inode that we know from earlier
scans, perhaps under a different name. For this to be possible, we need to be able
to assign some kind of unique identifiers to inodes that are stable, non-reusable
and independent of their names.

1.1.4 Identifying inodes
Inode numbers

The first natural candidate for an inode identifier is of course the inode number.
But inode numbers can be reused when an inode is deleted and a new one is later
created. This happens farily often, for example this simple experiment quite
reliably reproduces inode number reuse on an otherwise quiet ext4 filesystem:

$ echo "first file" >first
$ ls -i
12 first
$ rm first
$ echo "second file" >second
$ ls -i
12 second

Both files got inode number 12 despite being completely unrelated. In other
filesystems (e.g. btrfs), the inode number is simply a sequentially assigned iden-
tifier and numbers are not reused until necessary (usually never, because inode
numbers can be 64-bit so overflow is unlikely).

Thus at least on some filesystems, including ext4, one of the most common
filesystems in the Linux world, inode numbers cannot be used to reliably match
inodes between offline scans. Is there a better way?

12

Enter filehandles

There is an alternative way of identifying inodes, created originally for the pur-
poses of the Network File System (NFS) protocol. NFS was designed to preserve
the usual Unix filesystem semantics (e.g. that a file can be renamed while open)
over the network. It was also designed to be stateless on the server side. This
entails that a client should survive not only reconnection after a network outage
but even a full reboot of the server noticing nothing but a delay.

For example, the client must be able to continue using files opened before
the reboot as if nothing happened. Even if the files were renamed in-between.
Extreme case: open file on client, disconnect network, reboot server, rename the
file on server, reboot server, reconnect network, client can continue using the
renamed file.

To accomplish this, the concept of file handles was created. A file handle
is simply a binary string identifying an inode. But unlike inode numbers, a file
handle can never be resused to refer to a different inode. When a client tries to
use a handle referring to an inode that has been deleted, the server must be able
to detect that and return a “stale handle” (ESTALE) error.

A file handle should be treated simply as an opaque identfier, its structure
depends on the filesystem type used on the server side. Many file systems (in-
cluding ext4) create file handles composed of the inode number and a so-called
generation number, which is increased every time an inode number is reused.
Such pair should be unique for the lifetime of the file system.

Not all filesystems support file handles. Those that do are called exportable
(exporting is the traditional term for sharing a filesystem over NFS). Most com-
mon local filesystems (e.g. ext4, btrfs, even non-Unix filesystems like NTFS) are
exportable. On the other hand, NFS itself, for example, is not.

File handles are usually used by the in-kernel NFS server. But they can also
be accessed from userspace using two simple syscalls: name to handle at returns
the handle corresponding to a path or file descriptor. open by handle at finds
the inode corresponding to the handle, if it still exists, and returns a file descriptor
referring to it. If the inode no longer exists, the ESTALE error is reported. These
syscalls were created to facilitate implementation of userspace NFS servers. We
shall (ab)use them in rather unusual ways. [5]

Being non-reusable, file handles seem like a good candidate for persistent
inode identifiers. However, there is a different problem. The NFS specification
does not guarantee that the same handle is returned for a given inode every time.
[6, p. 21] I.e., it is possible for multiple different handles to refer to the same
inode, which prevents us from simply comparing handles as strings or using them
as lookup keys in internal databases. Most common file systems (including ext4
and btrfs) have stable file handles. However, just for the fun of it, we will show
a solution for the general case.

The best of both worlds

We propose a reliable inode identification scheme that combines the strengths
of both inode numbers (stability) and file handles (non-reusability). It works as
follows: for every known inode, we store both its inode number and a file handle
referring to it in our internal database, with inode number usable as a lookup

13

key.
Whenever we encounter an inode during a scan, we look up its inode number

in our database. If a record is found, we fetch the stored handle and try to open
it with open by handle at. If that succeeds, the original inode still exists and
thus its inode number has not been reused. At this point, we can be sure that
the inode we encountered during scan corresponds to the record just found in our
database. If we found it at a different path than last time, we can record this as
a rename.

On the other hand, if we get an ESTALE error, we know that the original inode
has been deleted and thus we can remove it from our database. We can then
proceed with inserting a new record with a new handle for the inode encountered.

Storing file handles has other benefits, too. For example the stored handle
allows us to open the inode corresponding to an internal record in our database
at any time (e.g. when synchronizing file data) free from the race conditions of
path resolution.

We have solved the inode identification problem for two broad classes of filesys-
tems: exportable filesystems and filesystems that do not reuse inode numbers.
This covers most common file systems that a Linux user encounters, with the ex-
ception of (client-side) NFS. That is rather unfortunate as it is common practice
for users to have NFS-mounted home directories in schools and larger organiza-
tions. This issue should certainly be given attention in further works but it seems
likely that it will require kernel changes.

Extended attributes

Another possibility is to use POSIX extended attributes (xattrs) [7] to help iden-
tity inodes. Extended attributes are arbitrary key-value pairs that can be at-
tached to inodes (if the underlying file system supports them; most moder Linux
file systems do). Because they are attached to inodes, they are preserved across
renames.

This offers a simple strategy: store a unique inode identifier as an extended
attribute. Whenever we encounter an inode without this attribute, we assign it
a new randomly-generated identifier and store it into the xattr.

However, we consider the handle-based scheme superior for several reasons:

• Not all file systems support extended attributes (probably less than support
file handles).
• The size of extended attributes is often severely limited. For example on

ext4, all the extended attributes of an inode must fit into a single filesys-
tem block (usually 4 kilobytes). While our identifier would be rather small,
we cannot predict how much data other programs store into extended at-
tributes.
• We use file handles for several other purposes, such as a race-free way

of accessing inodes and to speed up directory tree scans (as described in
sec. 1.1.5.
• Some programs copy all extended attributes while copying a file. This would

create two inodes with the same identifier, which is asking for trouble. We
could partially work around this by also storing the inode number in the
xattr and trusting its value only when it matches the real inode number.

14

• Extended attributes cannot be attached to symlinks. This seems harmless
at the first glance, we do not need rename detection for symlinks because
they are cheap to delete and recreate. However, rename detection on sym-
links will prove crucial in a surprising fashion when implementing a feature
called placeholder inodes (sec. 2.1.5).

1.1.5 Scanning a Directory Tree
Internal state

When scanning directory trees, we definitely do not want to store the full path
to each object. If we did and a large directory was renamed, we would need to
individually update the path of every file in its subtree. . . and probably transfer
all those updates during synchronization, unless additional tricks were involved.

Instead, we will choose a tree-like representation that closely mimics the un-
derlying filesystem structure. The internal state preserved between scans consists
of:

• A list of inodes, each storing:

– A so-called IID, a random unique identifier assigned upon first seeing
this inode.

– Inode number and filehandle as dicussed above, with fast lookups by
inode number possible.

– Last modification time, for files also size.

• For every directory inode, a list of its children as a mapping from names
(without path) to IIDs.

This way, when a large directory is renamed, it suffices to remove one directory
entry from the original parent and add one directory entry to the new parent,
requiring a constant number of updates to the underlying store.

Speed

Scanning large directory trees is slow, especially on rotational drives like hard
disks. The main contributor to this is seek times. We are accessing inodes, each
several hundred bytes in size, in essentialy random order. That is actually not
true as file systems contain many optimizations that do a good job at clustering
related inodes together but these are far from perfect and seek times are still a
major concern.

This problem is aggravated by the structure of the ext4 file system. In ext4,
the disk is split into equally-sized regions called block groups. Each block group
contains both inode metadata and data blocks for a set of files. [8]

Fig. 1.1 shows the on-disk block group layout. The dark bands represent areas
storing inodes, the white are data blocks. Also note that this picture is quite out
of scale. The default block group size is 2 GB,1 so on a 1 TB partition there will

1The default was 128 MB for ext2/3. Acutally, ext4 block groups are still 128 MB by default
but they are grouped into larger units called flex groups (16 block groups per flex group by
default), with inode metadata for the whole flex group stored at its beginning.

15

Block group

Figure 1.1: ext4 block group layout (not to scale)

be approximately 500 block groups. This makes inodes literally scattered all over
the disk.

This layout improves performance for most of the normal filesystem access
patterns (by improving locality between metadata and data blocks). However,
scanning the whole file system is not one of them.

Not all filesystems are like this. For example, NTFS keeps all file metadata
in one contiguous region called the Master File Table (MFT) at the beginning of
the partition. This allows the existence of tools like SwiftSearch2 that read and
parse the whole raw MFT in several seconds (bypassing the operating system)
and then allow instantaneous searches for any file by name, no previous indexing
required.

Nothing like this can be done for ext4. Just reading all the raw inode regions
will include a lot of seeks and takes tens of seconds to minutes.

In ext4 and many other filesystems, the inode number directly corresponds to
the location of the inode structure on disk. Because of the block group structure,
the mapping is not linear but it is monotonic. Therefore, if we access inodes in
inode number order, the access will be sequential inside each block group (with
perhaps only a few gaps for recently deleted inodes).

We can for example do the scan using a breadth-first search with a priority
queue ordered by inode number. We know the inode number from getdents
without stat-ing the inode itself

Faster rescans For the second and further scans, we can do even better. Linux
stores a modification time for directories as well as for files. The modification
time of a directory is the last time a direct child is added to it or removed from
it. Thus we can simply iterate over the all inode records in our database, files
and directories alike, in inode number order. We open each of them using the
saved file handle, which encodes the inode number and thus the location of the
inode on disk. We can then fstat the opened directory, which directly accesses
this location, without any path resolution steps that would require the kernel to
look up directory entries in parent directories.

This way, we access only inode metadata blocks (the gray areas in fig. 1.1)
and not directory content blocks, which are stored in the white data sections.
This further reduces seeking.

2https://sourceforge.net/projects/swiftsearch/

16

https://sourceforge.net/projects/swiftsearch/

Table 1.1: Scan times (mm:ss) and throughputs (in-
odes/min) for different access strategies.

Order Access by All inodes Files only Dirs only
time inodes/min time inodes/min time inodes/min

inode handle 1:40 1.4 M 0:34 3.5 M 1:37 125.9 k
path 1:56 1.2 M 2:08 943.5 k 1:22 149.6 k

scan handle 4:41 490 k 0:52 2.3 M 4:33 44.8 k
path 4:23 530 k 4:36 438.6 k 1:56 105.1 k

find path 4:41 490 k 4:27 46 k
random handle > 1 h > 1h

path > 1 h > 1h

Tbl. 1.1 shows times necessary to lstat all the inodes on a filesystem for
different access orders and access methods on a real-world ext4 filesystem with
approximately 2 million inodes (10 % of which were directories).

The experiment has been performed as follows: first, we performed a normal
depth-first scan of the directory tree to obtain a flat list of all the inodes in the
file system containing inode number, file handle and full path of each inode (this
is similar to what Filoco metadata would look like, only we use paths instead of
parent/child relationships).

Then we the complete inode list was loaded into memory and sorted in one
of the following ways:

• inode is ascending inode number order
• scan is the original order in which we encountered the inodes during the

recursive scan (that is, DFS order where children were visited in the order
returned by getdents)
• random is a completely random shuffle of the inode list

Then we clear the filesystem cache (using the sysctl -w vm.drop caches=3
command) to prevent it from unpredictably distorting the results. Only after
that, we start measuring time. Then we try to stat all the inodes in the given
order in one of two ways:

• handle means an open by handle at syscall on the saved handle followed
by an fstat.
• path means simply lstat-ing the saved path, which triggers the path reso-

lution process in the kernel.

For comparison, there is a row labelled find, which shows how long usual
DFS traversal of the directory tree (i.e. intermixed getdents and lstat calls)
would take (as performed by the find -size +1 command; the -size argument
is needed to force stat-ing every inode).

The results confirm our predictions:

• Accessing inodes in inode number order is faster (about two times) than
accessing them in DFS order.

17

• Accessing inodes using handles may be faster than using paths, as shown
by the “files only” case.

However, it showed a few rather surprising results:

• Scanning only directories takes almost as long as scanning all inodes even
though there is ten times less of them. Contrarily, scanning only files using
handles only is several times faster than scanning only directories, despite
there being 9 times as many files as directories. The times remain more
or less the same when we leave out the fstat and only open the handles.
From this we can conjecture that the open by handle operation is for some
reason significantly slower on diretories than files. Perhaps the kernel per-
forms some additional checks? This would definitely benefit from further
investigation.

All of this applies to an ext4 or similar file system on a rotational hard drive.
For btrfs and SSD, the differences will probably be negligible if any. The re-
sults were produced using scripts in the experiments/treescan2 directory in
attachment 1.

We experimented with several other techniques, for example massively paral-
lelizing the scan in the hope that the kernel and/or hard disk controller will order
the requests themselves in an optimal fashion. However, most of these attempts
yielded results worse than a naive scan so they would not be discussed further.

Race Conditions

Tree scanning presents numerous opportunities for race conditions. Some were
already discussed in sec. 1.1.3. But the most serious threat is a file being moved
from one directory to another during the scan. To be more precise, from a
directory that we have not yet scanned to one that we have. We would completely
miss such a file from the scan and might mistakenly consider it deleted.

As the whole scan may take several minutes, it is quite easy for this to happen.
It cannot be detected or mitigated in any easy way with offline techniques

alone. However, we can use an online detection mechanism during the scan.
Then, if any changes to the filesystem happen while scanning, the kernel will tell
us about them and we can for example rescan the few affected directories.

Even if we are not interested in long-term realtime change monitoring, it pays
to set up online change detection even if only for the duration of the scan. It is
the only way we know of of mitigating such race conditions without support of
the filesystem (e.g. in the form of atomic snapshots).

1.2 Online Change Detection

1.2.1 Inotify
Inotify[9] is the most widely used Linux filesystem monitoring API. It is cur-
rently used by virtually all applications that wish to detect filesystem changes:
synchronization tools, indexers and similar.

18

When using inotify, a process must first create a watch list – a list of inodes
that it wants to monitor. Inodes are added to the watch list using paths (file
descriptors may be added using the /proc/self/fd trick) but once added, the
kernel keeps a direct reference to the inode.

Inotify supports reporting all the usual filesystem events (writes, creations,
renames, unlink) and several less usual ones (opens, closes and reads). Events
are generated when anything happens to any inode on the watch list or a direct
child of a directory on the watch list. This holds true even for events that do not
touch the directory inode, like writes to a file inside a watched directory.

However, the watching is not recursive. Thus if we want to watch a whole
directory tree, we need add all the directories in the tree to the watch list one
by one. Experiments in the previous section have not shown much efficient ways
of doing that because opening directory inodes, which we now need, is for some
reason much slower than for files.

Inotify assigns a unique cookie called the watch descriptor to every inode
on the watch list. This watch descriptor is then returned with events concerning
this inode. In case of directory-changing events (creations, renames and unlinks),
a basename of the affected file is returned alongside the watch descriptor of the
directory. We can simply keep a mapping from watch descriptors to IIDs or some
other kind of internal identifiers. This also gives us access to the file handle if a
race-free access to the affected inode is necessary.

Another consideration is that the inotify watch list and the watched inodes
(which cannot be dropped from the inode cache because they are referenced by
the watch list) consume non-swappable kernel memory. This would not be a
problem for most users as the amount is approximately 0.5 kB per directory. For
our example file system with 200 000 directories, this would constitute 100 MB of
wasted memory.

Inotify can efficiently be used as an anti-race-condition aid during offline scans
(as discussed in sec. 1.1.5). Because we have to visit all the directories during
the scan anyway, we can add inotify watches to them at little extra cost (except
for memory usage). To prevent all kinds of races, we have to first add the inotify
watch for a directory and only then read its contents.

1.2.2 Fanotify
Fanotify [10] is the newest change notification API added to the Linux kernel.
Like inotify, it supports watching individual inodes but unlike inotify, it also
supports watching whole mount points. Note that this is not the same as watch-
ing one filesystem volume because (1) one volume may be accessible via several
mountpoints, (2) a mount point may show only a part of a volume’s directory
tree. For example, after invoking the commands:

mount -t ext4 /dev/sdb1 /mnt/hdd
mount --bind /mnt/hdd/music/bob /home/bob/music

there are two mount points:

• /mnt/hdd, which shows the whole directory tree of the file system on the
/dev/sdb1 device

19

• /home/bob/music, which shows the /music/bob subtree of the file system
on /dev/sdb1

When you create a fanotify watch for the /home/bob/music mount point,
you get events for filesystem changes made via this mount point. For example,
if some program writes to /mnt/hdd/music/bob/test.mp3, you will not get an
event, even though the file /home/bob/music/test.mp3 now has different content
than before.

This could be (ab)used to make fanotify watch only a given directory sub-
tree. For example when you issue the command mount --bind /home/alice
/home/alice, the directory /home/alice becomes a separate mount point (al-
though it contains the same files as before), which can be separately watched by
fanotify. However, this has a drawback: it is not allowed to move files between
mount points, even if the two mount points refer to the same filesystem volume.

Another interesting property of fanotify is that you get a file descriptor to the
affected inode along with any event. From it we can determine inode number and
file handle and look up the corresponding object in our internal database.

However, fanotify has two important limitations:

• Its use requires root permissions (because otherwise there is no easy way
for the kernel to determine which events a user should be allowed to see).
• More importatnly, it does not report directory-changing events (creates,

renames, and unlinks).

1.2.3 The FAN MODIFY DIR kernel patch
We have implemented an extension to fanotify that enables it to report directory
change events. This extension is available as a series of two kernel patches (cur-
rently against Linux 4.10, but they should apply to any 4.x version with trivial
modifications) in the src/fanotify/ directory in attachment 1.

Such an extension is useful not only in context of file synchronization but also
for example to filesystem indexers.

There are two main reasons why fanotify currently does not support directory
events. Let’s look at how we deal with each of them.

Directory event semantics

The first problem is that it is not clear how to represent directory events and
what semantics should they have in order to be useful.

Inotify reports them in a rather complicated way that involves passing watch
descriptors of parent directories and string names of their children. Because of
race condition, by the time you receive the event, these names may already refer
to a completely different inode than the one the event was about. There are also
issues with regard to what is or is not guaranteed about ordering of these events,
especially in cases such as concurrent cross-directory renames. In general, inotify
directory events are hard to interpret correctly.

In contrast, the fanotify event interface is beautifully simple. You get a fixed
size structure with one event type, one file descriptor, no need to allocate space
for any strings and no need to worry about what they mean.

20

Our solution to this conundrum lies in the filesystem-watching wisdom that
we have already encountered several times: names are useless (and paths are
even more useless), inodes and file descriptors are great. So instead of passing
any names to userspace, we generate a simple event called FAN MODIFY DIR every
time the contents of a directory are changed in any way (a directory entry is
added or removed), i.e. exactly when the directory’s mtime would be updated.

As with all fanotify events, you get a file descriptor – one referring to the
modified directory, i.e. the parent of the created, renamed or unlinked file. This
makes directory modification events completely analogous to file modification
events. In case of a cross-directory rename, you get two FAN MODIFY DIR events
for both the old and new parent directory.

This scheme is based on a suggestion made on the Linux kernel mailing list
back in 2009. [11] Since then, nobody has attempted to implement it.

This scheme has one more advantage (pointed out to me by kernel developer
Jan Kára in personal communication): when there are more events of the same
type queued for an inode before they are read by userspace, kernel automatically
merges them. So for example when moving 100 files from one directory to another,
you would get only a few events instead of 200.

We have expanded this idea into a more general trick. You can actually pur-
posefully stall reading fanotify events, to (1) give kernel more chance for merging
repeated events, (2) read events in larger chunks to reduce number of context
switches, even when there is a little delay between them. The realization is
rather simple, as shown in algorithm 1.1.

Algorithm 1.1 fanotify event grouping
1: repeat
2: wait 5 seconds
3: wait for a fanotify event to be available
4: read all pending events into one large buffer and process them

This has to be done carefully because waiting too long might cause the kernel
queue to overflow and events to be dropped.

Which mount point?

The second problem lies in the fact that fanotify watches are tied to a specific
mount point. Thus to generate a fanotify event in reaction to a filesystem opera-
tion, we need to know through which mount point the operation was performed.
Two important in-kernel structures are relevant to understanding this:

A struct dentry represents one directory entry. It contains the following
information:

• A reference the inode to which the directory entry refers (the child)
• The name of the entry
• A reference to the parent dentry. It really is the parent dentry, not the

parent inode; this allows reconstructing full paths by walking the dentry
parent chain. However, there can also be so-called disconnected dentries
that do not know their parent or name, so they should be rather considered
to represent an inode than a directory entry. These can be created for

21

example when opening file handles, because in that case the inode is directly
accessed without path resolution so its parents cannot be known.

A struct path, despite its name, does not represent a string path but rather
the result of path resolution. It contains references to:

• The dentry represented by this path.
• The mount point to which the original path belongs.

The kernel’s open file description structure stores a struct path representing
the path using which the file was opened. This allows, among other things, (1)
showing full paths of files open by a process by tools such as lsof or ls -l
/proc/<pid>/fd, (2) generating correct fanotify events because the mount point
is known.

However, most kernel-internal filesystem APIs, including the ones dealing with
directory changes, operate on inodes and dentries and do not get the mount
information contained in a struct path.

Here is how an unlink syscall is currently processed in the Linux kernel:

1. The syscall implementation (SYSCALL DEFINE1(unlink) in fs/namei.c)
gets string path from userspace.

2. It calls helper function to resolve the path into a struct path.
3. It passes the dentry from the struct path to a kernel-internal function

vfs unlink.
4. vfs unlink carries out the operation and generates an inotify event for the

parent inode. It does not generate a fanotify event because it does not know
the mount point.

The vfs unlink function (and other similar functions like vfs rename) is a
stable kernel API that is used on many places in the kernel so it is not easy to
change its signature.

Instead, we opted to generate the fanotify event directly in the syscall code,
and many other places that call the vfs * functions, for example the in-kernel
NFS server. Scattering fanotify calls at several places across the kernel is probably
not a good long-term solution but practically it works.

Our patch has been submitted to the Linux kernel mailing list as a RFC but
it sparked little interest at the time. [12]

1.2.4 Amir Goldstein’s fanotify patches
Another solution to the fanotify directory events problem has appeared recently,
in parallel with ours. [13]

Amir Goldstein’s patches are a much more comprehensive (and complex) so-
lution to the directory event reporting problem. They offer the following features:

• Report separate fanotify event types for the individual kind of directory
entry manipulations (create, rename, unlink).
• Optionally report names of the affected directory entries in addition to the

parent directory file descriptor. When this flag is disabled, the result is
rather similar to our patch.

22

• Allow attaching fanotify watches to filesystem volumes as a whole as op-
posed to specific mount points.
• Allow reporting events about an arbitrary directory subtree of a file system,

although this is subject to reliability issues. Specifically, as it filters events
by walking dentry parents, it does not report events for disconnected den-
tries (because the kernel simply does not know whether they belong to a
given subtree).

The last point seems particularly interesting because this might in the future
allow file systems to generate fanotify events from within, which are not related
to any specific mount point. This could be used for example by distributed or
network file systems to report server-side changes.

23

24

2. Metadata Synchronization

2.1 Metadata Model
As stated in the introduction, in Filoco, every store keeps a complete copy of the
metadata about all files in the realm but only stores actual data of a subset of
the files.

This concept was used for example by git-annex [14], where, as the name
suggests, metadata is stored in a git repository (with actual file contents stored
externally in a distributed fashion).

The user can configure which files should be replicated to which stores – either
on a per-file basis or using filters depending on file name, path, type or size. This
allows them to choose a compromise between storage requirements, redundancy,
and availability.

For example you can configure some small, important or often-used files
(emails, writings, notes, own source code) to be always replicated everywhere,
while bigger and less important files (movies you will probably never watch again)
will have only one copy distributed among several slow external hard drives in
your closet.

Currently, you have to manually configure which old movies should be stored
on which slow external drives. In the future, there should be the option of au-
tomatically distributing a given set of files over a given set of stores. So you
could classify five stores as movie disks a thousand files as movies and Filoco
would automatically spread the files across the drives. There could be even more
advanced option, for example configure some files to be stored at two out of four
backup drives and one out of two server stores.

On the other hand, global metadata allows you to always keep track of all
your files, no matter where they are stored, even if it is an external hard drive in
your safe deposit box. The synchronized metadata contain a complete directory
tree (i.e. file/directory names and parent-child relationships) of all the files in the
realm, which is shared among all the stores.

This means that is is not possible to have a file stored under a different name
in one store than in another. If a file or directory is moved or renamed on one
store, this change is replicated to all stores, even those not hosting the file’s
content. The rename can even be initiated from such a store.

You can completely reorganize your directory hierarchy from the comfort of
your laptop, even though some of the files are physically located only on offline
external drives. The next time you connect such drive and perform synchroniza-
tion, these renames will be applied there.

Apart from the directory tree and some basic metadata like file sizes, the
centralized metadata contains two important pieces of information:

• Data location information, that is, a list of stores that have the file’s content
(and in what version, as described below). This allows you to ask Filoco
for the content of a file and if it is not locally available, it will either fetch
it from a reachable store that has it or at least inform you on which stores
host the file. You can then take the right external disk out of your closet
or turn on your secondary laptop as neccesary.

25

• Data checksum. This allows to detect media failure or tampering and when
detected, use another replica if available.

2.1.1 Detailed metadata structure
Now we shall examine the structure of the globally replicated metadata in more
detail. Metadata is modelled as a set of immutable objects of several different
types (described below). Each object has a unique 128-bit identifier, generated
etither pseudorandomly or using a cryptographic hash function from the object’s
content. The result of complete synchronization between two stores is always
the set union of their objects, although partial synchronization is also possible
(e.g. restricted to a directory subtree).

How can we represent changing entities (e.g. files with changing content) using
immutable objects? In exactly the same ways as git commits are organized [15].
We create a new object for each version of the file, which contains references to
the parent version(s).

As synchronization never deletes objects, we are currently forced to keep indef-
inite metadata revision history (just as is the case for git). A cleanup mechanism
might be introduced in the future.

The following types of objects currently exist:

• A filesystem object (FOB) is the basic unit Filoco works with. It rep-
resents a single file or directory (other inode types, including symlinks, are
currently not supported, though support should be trivial to add). It serves
primarily as an identifier for the filesystem object that is stable across re-
names. It also carries immutable metadata like inode type (file or directory).
A filesystem object has three important conceptually mutable properties:
(1) content hash (files only), (2) location in the directory tree, (3) storage
information (a list of stores that host the file’s content). As suggested
above, the values of these properties are not stored inside the FOB object
but instead as separate version objects (FCVs, FLVs and SRs) described
below.

• A file content version (FCV) contains information about one version of
a file’s content. It stores the ID of the relevant FOB and, similartly to a git
commit, the content hash and a list of parent versions (FCVs) of the given
file. The parent list is used to establish an ordering on the versions. This
is necessary because the FCVs are stored in an otherwise unordered object
set. It also helps conflict handling. See sec. 2.1.2 for a precise explanation
of parent version semantics.

• A FOB location version (FLV) describes the location of a filesystem
object as a versioned property. Location is represented by the tuple (parent,
name), where parent is the ID of the parent FOB. This format was chosen
for three reasons: (1) It allows us to efficiently rename or move directories
that contain a large number of files and subdirectories (which would be
impossible if we stored full path for each file). Each such move costs only
one new FLV for the directory being moved. (2) While maintaining a list
of child FOBs for each directory would also allow for efficient renames and

26

would be closer to Unix tradition, a parent pointer is a scalar value whose
versioning is conceptually much easier than trying to define semantics for
versioning child lists. (3) It corresponds to my personal intuition that name
and parent directory are logically properties of the file (for name it should
be quite clear, directory could be considered a kind of category tag attached
to a file). Similarly to FCVs, a FLV carries a list of parent FLVs.

• Storage records (SR) describe storage events. A storage event consists
of a store beginning or ceasing to host a given FCV. The fields of a SR
are (1) store identifier, (2) FCV ID, (3) event type (start or end of object
hosting) and (4) a list of parent SRs, just as with other versioned objects.
To determine whether a store has the contents of a FCV available, one
has to look at the event type of the last (by parent-child ordering) SR for
the given FCV and store ID (while remembering that this information is
not necessarily up to date, so we have to be wary about deleting a file
independently on two stores because each of them thinks the other has a
copy).

There are also a few attributes common to all the object types:

• An identifier of the store which created the object.
• A creation timestamp.

Please note that the versioning of FOB properties is there only to facilitate
synchronization, conflict resolution (see below), and auditing. We do not try
to systematically keep the content of old file versions. Except for when conflicts
occur, each store only keeps the content of the newest version of any file. Because
of synchronization delays, old versions can be present in the realm for quite some
time but this is a byproduct and users should definitely not rely on that. However,
the architecture is intentionally designed such that (optional) versioning can be
implemented in the future.

2.1.2 Versioning and conflict resolution
Wherever there is bidirectional synchronization, there looms the threat of con-
flicts. Imagine that two stores A and B have the same version v of a file. Then
the user makes changes to the file in store A (perhaps on a laptop), creating a
new version wA. Later they modify the file in store B, which still has the old
version v (perhaps it is on their work computer, because they forgot the laptop
at home). They make some other, independent changes, creating a new version
wB.

When they synchronize A with B later, both stores will have both versions
wA and wB in their metadata database. But which of these versions should be
considered “current”, which version of the file should be checked out (i.e., written
to the file system)? Clearly, it is incorrect to replace wA with wB on A (even
though wB has a newer timestamp), because the changes made from v to wA

would be lost. It is also incorrect to just keep wA and ignore wB, for the same
reason.

This situation is called a (version) conflict and is familiar to most readers
from revision control systems like git. While in some simple scenarios, conflicts

27

can be resolved automatically using techniques such as three-way merge1 or git’s
recursive merge, they often require user intervention.

In Filoco, we decided to leave all conflict resolution up to the user, for three
reasons:

• Conflicts should be much less common than in revision control systems.
Most RCS conflicts are caused by multiple people working on one project
simultaneously. Because our primary focus is managing personal data, we
usually expect only one person making changes to files in a Filoco realm.
But conflicts certainly can happen, e.g. because of delayed synchronization
and offline stores, as suggested by the scenario above.

• We are not limited to source code or plain text and have to handle all
kinds of files including binary (LibreOffice documents, images, archives,
databases. . .). There is no universal conflict resolution strategy for such a
wide variety of file types.

• As we do not systematically keep the content of old file versions, the com-
mon parent of the two conflicting versions is not guaranteed to be available
at the time of resolution, which precludes using most classical conflict-
resolution strategies based on three-way merge and it variants.

Thus when a conflict occurs, we simply present the user with both the con-
flicting versions and they have to somehow merge their content, either manually
or by using some specialized tools.

The following additional requirements have been set for conflict handling in
Filoco:

1. Conflicts must be automatically and realiably detected, so that we can apply
all non-conflicting changes without user intervention on the one hand and
inform the user of any conflicts on the other.

2. The user should not be forced to resolve conflicts immediately (e.g. as a part
of the synchronization process). When a conflict occurs, the synchronization
should finish completely, synchronizing all the other changes, conflicting or
not. The user should be able to resolve any conflict locally at a later time
(for example when the user wants to access the affected file).

3. Conflicts should not impede further synchronization. For example, if store
A has conflicting versions v1, v2 of a file and later synchronizes with a store
C that has neither, it should transfer both versions there. The user can
then resolve the conflict in any of the stores.

4. Once a conflict has been resolved in one store, the resolution should spread
to all other stores. This makes the previous requirement much more useful.
Of course, if there were independent changes that were not part of the
resolution, this can create more conflicts.

1This technique is now virtually ubiquitous. It originated in the GNU diff3 program
developed by Randy Smith in 1988[16].

28

5. It should be possible to rename or move a file in one store and edit it in
another without this being considered a conflict.

We shall present a simple solution that fulfills ale these requirements. It is in
large part based on how branching and merging works in git. First, we shall look
into content versioning and then briefly mention location versioning and storage
record relationships.

Each FCV has a list of parent FCVs. Usually (except for when resolving
conflicts), this list contains just a single item: the logically preceding version.
When you have a version v of a file on your file system and modify it, a new version
w is created with a single parent v. The parent-child relationship signifies that
w is based on v, that it incorporates all the content from v that the user did not
purposefully remove, that it supersedes v. Whenever a store has version v checked
out (meaning that the contents of the corresponding file in the user’s local file
system corresponds to version v) and acquires version w through synchronization,
Filoco automatically replaces the checked out version with w.

The parent-child relation (or more precisely, its transitive closure) describes
a partial ordering on the versions. As long as you keep your replicas up to date
and always edit only the chronologically newest version of the file, the ordering
is linear (the version graph is a path) and there is a unique maximum (“newest
verson”).

However, when you make changes to an older version of the file (in a store that
is not up to date) and later synchronize them, the history branches, as shown in
fig. 2.1). Now the version ordering has multiple maximal elements (we call these
heads). This we shall consider the definition of a conflict state, which will be
announced to the user.

After the user resolves the conflict, a new version (marked z in the figure)
is created with all the previously conflicting versions as parents. Now there is
again a unique head and thus no conflict. After another resynchronization, the
resolution is spread to B, which automatically checks out z instead of either w1
or w2.

As noted above, this is very similar to git branching and merging, with several
differences:

• Versioning is done per file instead of the whole repository. This allows
resolving conflicts individually and leaving some unresolved for a later time.
• Branching is implicit. It works as if whenever you were trying to do a non-

fast-forward push in git, instead of the remote rejecting it, a new unnamed
branch would be automatically created. This allows synchronization in the
presence of conflicts and delayed conflict resolution.

File locations are versioned independently from content, so that one can edit
the file in one store and rename it in other without this constituting a conflict
(this fullfills requirement #5).

Two kinds of conflicts can arise when dealing with FLVs:

• An identity crisis conflict happens when the FLV graph for a given FOB
has multiple heads (i.e., we try to assign multiple different locations to a
file). This is similar to a FCV conflict but less severe because it cannot lead

29

A
u

v

B
u

v

In the beginning

A
u

v

w1

B
u

v

w2

After edits on both sides

A
u

v

w1 w2

B
u

v

w1 w2

After re-synchronization

A
u

v

w1 w2

B
u

v

w1 w2

z

After resolution on B

A
u

v

w1 w2

z

B
u

v

w1 w2

z

After re-synchronization

Figure 2.1: History branching during a conflict

to data loss. Currently we just give precedence to the FLV with the newest
timestamp and output a warning.
• A pigeonhole conflict happens when head FLVs for different FOBs try to

claim the same location. This is currently resolved by appending a unique
suffix to each of the file names.

Storage records use the same parent-version mechanism but with differrent
semantics. Whenever a new SR is created, its parents are all the current SR
heads of a given FOB (regardless of from which store they are). This gives a
partial ordering on the SRs. This is purely for informative purposes. SR heads
have no special meaning, multiple SR heads are not considered a conflict or in
any way an unusual state.

2.1.3 Alternative versioning: vector clocks
As an alternative to explicit git-like parent version pointers, we could use vector
clocks for partially ordering versions. This is a now almost universally known
mechanism for versioning in distributed systems, discovered independently by
two teams in 1988 [17][18].

Their main advantage is that we do not need to maintain information about
previous versions. Instead, it suffices to remember a vector of s integers (where s
is the number of stores in the realm) for each head version. The partial ordering
between any two versions can be determined by just looking at their vectors,
without any additional information. As we expect s to be small and infrequently
changing, this seems to be fairly efficient.

The main reason to use for an explicit version graph is to keep a permanent
record of changes made to a file for auditing purposes. This is useful when dealing
with potentially compromised stores. When a file contains unexpected data, you
can look up which stores modified it and when. The version graph can be made

30

into a Merkle DAG (which works exactly the same as a Merkle tree [19], only it is
a generic DAG instead of a tree) to prevent anyone from rewriting history. This
is exactly the same thing that git does with commits. [15]

2.1.4 Working versions

Creating new FCVs is expensive. Not only additional versions increase metadata
storage requirements but we also have to compute a hash of the file’s content,
which is slow and creates unnecessary I/O and CPU load on the system. If some
process writes a few kB into a 4 GB file every second (think disk images and large
databases), we definitely do not want to read the whole file and compute a hash
every time. Not to mention that computing a hash of a file that can change at
any moment is riddled with race conditions, which have to be handled, increasing
the price even more.

To overcome this, whenever a local change to a file is detected, a so-called
working FCVs is created. This is a special FCV with the content hash field left
empty. This version normally participates in metadata synchronization, to let
the other stores know you have a new version of the file.

Whenever you want to synchronize the contents of the file with another store
(see chapter 3 for details on that), a full FCV is created with the working FCV
as a parent. This is rather cheap because during data synchronization, we have
to read the whole file and deal with race conditions anyway.

Storage records are never created for working FCVs. The only store that
can ever have the data for a working FCV is the one that created it. Whenever
the data is transferred to another store, a full FCV is created to represent the
transferred version of the file.

A working FCV never has another working FCV as a parent. When the local
head already is a working FCV and the file is further modified, no new FCVs
are created, the current working FCV is simply re-used to represent the newer
modified version. A consequence of this is that one cannot reliably determine the
file’s last modification time from a working FCV timestamp because the FCV
is created upon the first of a series of local modification. While a last modified
timestamp would be a nice information to have in the metadata, we consider this
a small price to pay for less version bloat.

2.1.5 Placeholder inodes

One of the major goals of Filoco is to present the user with an unified view of
their data, no matter where they are physically stored. This means first and
foremost a unified directory tree. This begs the question of how to represent files
for which we have no data in the local file system.

We could omit them completely and offer some specialized tools (called per-
haps filoco-ls, filoco-tree, etc.) to list the locally missing files. However,
this seems rather inconvenient. We opted for a different method, and that is to
represent them with a special kind of inode. The best choice seems to be a broken
symlink, i.e., one with a nonexistent target (/!/filoco-missing in our case).

This has several advantages:

31

• The user can see the missing files with all the filesystem access tools they
are used to, from CLI tools to graphical file managers, search tools, shell
scripts, etc. All of them will give the same consistent view of the global
directory tree.
• The user can manupulate (especially move, rename and delete) locally miss-

ing files using any tools of their chosing: command-line mv, file managers,
mass rename tools, shell scripts or custom programs in any language.
• Many programs visualize broken symlinks in a way that symbolizes the

concept of “missing”. ls shows it in red, some GUI programs will show a
cross mark or warning icon, etc.
• When a program shows symlink targets (as ls -l does, or some file man-

agers in the status bar), the user sees the informative string “filoco-missing”.
• When trying to access the file programmatically, one gets the correct er-

ror code, namely ENOENT (“No such file or directory”), the same error as
returned for nonexistent file names.
• The chosen target /!/filoco-missing offers one more advantage: the

/! directory is unlikely to exist on anyone’s file system. Thus when one tries
to open the symlink for writing (e.g. using echo x >some-missing-file),
they also get an error because the target cannot be created. If we used
a relative target such as filoco-missing, a file named filoco-missing
would be silently created upon the write attempt, turning the symlink into
a non-broken one.

2.2 The Set Reconciliation Problem
Our metadata is modelled as a set of immutable objects identified by unique
IDs. In order for two repositories A and B to synchronize their metadata, A
should send to B exactly the objects A has but B does not (an vice versa, if we
want bidirectional synchronization). If OA is the set of object IDs possesed by A
(analogously OB for B), A should transmit the set difference OA \OB.

The only problem is, A does not know OB. In a cenralized client-server setup,
the client can keep track of which objects it has already sent to a server and
send only new ones during synchronization. In this case, the client is essentially
keeping track of the intersection OC ∩OS without knowing the whole OS, which
is enough for computing the set difference. The server can do the same for every
client.

This is indeed what most centralized synchronization tools do. However, such
approach does not translate to a distributed setting. For example, assume node
A has a lot of new objects compared to node C and keeps track of this. Now
we synchonize node A with another node B and then B with C. Now C has
all the extra objects from A but A is not (and cannot) be aware of that. If we
synchronize A with C at this point, it will send all those objects all over again.
We will call this the indirect synchronization problem.

Instead, we will use a stateless approach. We want a protocol that allows two
nodes to efficiently compute the intersection OA ∩ OB without any prior mutual
information (A knows only OA and B knows only OB at the start of the exchange).

This is a known problem called the Set Reconciliation Problem [20]. It could
be formally stated as follows. Let U = {0, 1}ℓ be a universe of ℓ-bit strings for

32

some fixed ℓ. Alice has an arbitrary set A ⊆ U . Bob likewise has a set B ⊆ U .
At the beginning, they know nothing about each other’s sets. We want to find
a protocol that allows Alice to compute the set difference A \ B and Bob to
compute B \ A.

For our use case, we shall assume that both sets A and B similar in size: n :=
|A| ≈ |B|, and significantly larger than their respective differences, which we shall
for the sake of simplicity also consider similar in size: n≫ c := |A\B| ≈ |B \A|.
The asymmetric case is not much more interesting. The number c represents the
number of “changes” (represented by new objects being created) made on one
node that need to be synchronized to the other.

There are several ways of measuring the efficiency of different protocols, all
expressed as a function of n, c, ℓ, and any parameters of the protocol.

• Communication complexity, i.e., the total number of bits transferred in both
directions.
• Number of rounds of communication. This is important because it deter-

mines the number of network round trips required. And especially in mobile
networks, latency is often a greater concern than bandwidth – the RTT on
a 3G connection with suboptimal reception can be 500 ms or more.
• Computational time on each side. Without any precomputation, this would

have to be at least Ω(n) because of the need to at least read the input sets.
As n is presumed to be large compared to c and the sets will probably be
stored on disk, we would prefer to have a data structure that can efficiently
answer queries about the set needed by the reconciliation protocol – ideally
in a time dependent only on c and not n (or maybe on something like log n
at worst).

We will be primarily interested in the expected (as opposed to worst-case)
values of these complexities. This is because the elements in our sets are random
(either pseudorandomly generated or cryptographic hashes) and we only com-
municate with authorized peers so we do not have to worry about adversarial
inputs.

2.2.1 Divide and conquer
A rather obvious solution to the set reconciliation problem and one of the first
described [20, alg. 3.1] is a simple divide-and-conquer approach. First, let’s
assume that the elements in the sets to be from a uniform probability distribution.
If they are not, we first process them by a hash function and apply the rest of
the protocol on the result.

First, we need a way to compare two sets X and Y possessed by Alice and
Bob, respectivelly. This is simple: Alice computes a value Digest(X) represent-
ing the set. This value should be the same for equal sets and with high probability
different for inequal sets. A simple implementation of Digest would be to com-
pute a cryptographic hash of the concatenation of all the elements of X. Now
simply Alice sends Digest(X) to Bob and Bob sends Digest(Y) to Alice. If
they get a value equal to what they sent, the sets are the same.

From this, a divide-and-conquer reconciliation algorithm is glaringly obvious
(alg. 2.1).

33

Algorithm 2.1 Basic divide-and-conquer algorithm for set reconciliation
1: procedure Recon1(A, i = 0)
2: DA ← Digest(A)
3: Send(DA)
4: DB ← Recv() ▷ The other side’s digest
5: if DA = DB then
6: return ∅
7: else if A = ∅ then
8: return ∅
9: else if DB = Digest(∅) then

10: return A ▷ Other side’s set is empty, need to send everything
11: else if i = ℓ then
12: return A
13: else
14: A0 ← {x ∈ A | xi = 0} ▷ All the elements with i-th bit zero
15: A1 ← {x ∈ A | xi = 1}
16: return Recon1(A0, i− 1) ∪Recon1(A1, i− 1)

=0

This can be easily visualized if we look at the strings of each side as an
(uncompressed) binary trie. If vs is a vertex of the trie representing the prefix s,
let As and Us denote the subsets of A, resp. U restricted to elements with this
prefix.

Recursion then simply walks this trie. Both parties start in the root vε. If
Aε = Bε, the sets are the same and algorithm ends. If Aε or Bε, one side’s set is
empty and the other party has to send the whole set. In this case, recursion also
stops at both sides. If Aε and Bε are nonempty and different, both sides recurse
to v0 and v1. The same is repeated for every vertex visited. Only in case of a
leaf, no recursion is done because each set contains at most one element so the
set difference can be computed trivially.

From this description it is also clear that the recursion tree looks exactly the
same on both sides: Alice and Bob visit the same trie vertices in the same order;
Alice recurses exactly when Bob recurses and stops recursion if and only if Bob
stops recursion. Because of this, it is sufficient to send only the subset digests in
the vertex visit order, without any further labelling.

Complexity

Communication complexity How does the protocol fare on the different com-
plexity measurements? We recurse from vertex vs iff (1) there is at least one new
leaf under this vertex in Alice’s trie, (2) there is at least one leaf of any kind (new
or old) under this vertex in Bob’s trie (or vice versa). These events are indepen-
dent. Let’s examine the probability of the first condition p1 := P[|As \ Bs| ≥ 1].
Because leaves are uniformly distributed, the expected number of new leaves un-
der vs is E[|As \Bs|] = c · |Us|/|U | = c/2d, where d is the depth of the vertex. By
Markov’s inequality, p1 = P[|As \Bs| ≥ 1] ≤ min(E[|As \Bs|], 1) = min(c/2d, 1).

Similarly, we can estimate p2 := P[|Bs| ≥ 1] ≤ min(n/2d, 1). Therefore, the
probability of recursing from a vertex is p ≤ 2p1p2 ≤ 2 min(c/2d, 1) min(n/2d, 1).

34

We multiply by two because the new leaf can be on either side and we use the
union bound.

For the first lg c levels of the tree (which we shall call slice I), the estimated
value of p is 2, which we shall cap to 1. We expect the recursion tree in this
slice to be very close to a full binary tree. The total expected number of vertices
recursed from in the slice thus is E[KI] ≤ 2lg c+1 = 2c.

For the next (lg n − lg c) levels (slice II), our estimate is p ≤ 2c/2d. The
expected number of vertices visited on each of these levels is E[kd] = 2d· ≤ 2d ·
2c/2d = 2c. Thus in total we expect to recurse from E[KII] ≤ 2c(lg n − lg c)
vertices in total on these levels.

For the remaining ℓ − lg n levels (slice III) at the bottom of the tree, we
estimate p ≤ 2cn/22d. Thence again, E[kd] ≤ 2cn/2d = 2c/2d′ , where d′ := d−lg n
is vertex depth measured from top of the slice. Totalling over the slice we get
E[KIII] = 2c(1 + 1/2 + 1/4 + . . .) < 4c. In this slice even elements common to A
and B are becoming increasingly sparse so any recursion soon dies out because
it hits an empty set on the other side.

The total expected number of vertices recursed from is simply E[K] = E[KI]+
E[KII]+E[KIII] ≤ 2c+2c(lg n− lg c)+4c = 6c+2c(lg n− lg c). The total number
of vertices visited is simply twice this number, i.e., 12c + 4c(lg n − lg c) and the
total number of bytes transmitted is cg(3 + lg n− lg c), where g is the digest size
(we send two g/8-byte digests per visited vertex).

Communication rounds Now we would like to estimate the number of com-
munication rounds. If the algorithm were implemented as described in algorithm
2.1, each visited vertex would cost us one round. However, the algorithm can be
easily modified to perform a breadth-first traversal of the original recursion tree.
Then we can send digests from all active vertices on a given level in a single round
and the number of rounds needed is exactly the depth of the recursion tree.

This modification is shown as algorithm 2.2. It should be easy to see that this
algorithm straightforwardly maps to the original.

We know an upper bound on the expected number of vertices E[kd] visited on
each level of the tree. From this, we can once again use Markov’s inequality to
estimate the probability as least one vertex is visited on that level. The expected
number of rounds is then simply the expected number of levels on which ve visit
at least one vertex. We will do this again per slice.

For slice I, we expect to visit all levels, i.e. rI ≤ lg c. For slice II, E[kd] = 2c >
1, so again we expect to visit all levels, E[rII] ≤ lg n− lg c. With slice III, we are
finally getting somewhere. We have shown that E[kd] ≤ 2c/2d′ , where d′ is vertex
depth relative to the top of slice III. Thus the probability of visiting at least one
vertex on a level is bounded by min(2c/2d′

, 1). For d′ ≤ 1 + lg c, this bound is
equal to one. For all the subsequent levels, the probabilities form the geometric
sequence with sum 1 + 1/2 + 1/4 + · · · < 2. Thus the expected number of levels
visited E[rIII] ≤ 3 + lg c.

When we put this together, we can bound the expected number of communi-
cation rounds by E[r] = E[rI] + E[rII] + E[rIII] ≤ 3 + lg n + lg c.

Note that our protocol is not a request-response protocol. Instead, communi-
cation in both directions happens at the same time. The message we recieve in
round i is not a reply to the message we sent in round i but the one we sent in

35

Algorithm 2.2 Breadth-first modification of the divide-and-conquer reconcilia-
tion algorithm

1: procedure Recon1-BFS(A)
2: active← [ε] ▷ ordered list of active vertices on cur. level
3: C ← ∅ ▷ the local changes (A \B)
4: while active ̸= [] do
5: dA ← [Digest(As) | s ∈ active]
6: Send(∥ dA) ▷ concatenation of all active vertices’ digests
7: dB ← Recv() split into digest-sized chunks
8: next← []
9: for 0 ≤ i < |active| do

10: if dA[i] = dB[i] then
11: do nothing
12: else if As = ∅ then
13: do nothing
14: else if DB = Digest(∅) then
15: C ← C ∪ As

16: else if i = ℓ then
17: C ← C ∪ As

18: else
19: append s ∥ 0 and s ∥ 1 to next

20: active← next
21: return C

round i− 1. This means that the number of network round trips required is half
the number of cummunication rounds, as shown in fig. 2.2.

We should also realize the importance of the breadth-first optimization here.
The naive recursive implementation would require as many rounds as vertices vis-
ited, 12c+4c(lg n− lg c). This would require hundreds to thousands of roundtrips
for moderate values of c, which would result in a total time of several seconds to
several minutes(!) depending on network quality.

Computational time If we use the naive digest function suggested in above,
computional complexity will be simply too horrendous to be even worth estimat-
ing, definitely at least Ω(n). Instead, we can make the trie on each side into a
Merkle tree [19]: we define the digest of any nonempty set As corresponding to
vertex vs as a cryptographic hash of the digests of two child sets in the trie (∥ is
the string concatenation operator):

Digest(As) :=

⎧⎨⎩0 · · · 0 if As = Ø
Hash(Digest(As ∥ 0) ∥Digest(As ∥ 1)) otherwise

We can store digests for all non-empty vertices on disk. This allows us to
get any digest in O(1) expected time if we use a hashed store or O(lg n) worst-
case time if we use a tree-based structure (e.g. a typical SQL database with
B-tree based indices, which is the case for the SQLite database used by Foloco).
For an tree-based database, we get total computational time O(c lg2 n) for one

36

(a) request-response

RTT

(b) “criss-cross”

RTT

Figure 2.2: Communication rounds vs network roundtrips

reconciliation. When adding a new object to the set, we must update the hashes
of all of its ℓ ancestors, which can be done in time O(ℓ lg n).

2.2.2 Divide and conquer with pruning
From the estimates given in the previous section, we can infer that the recursion
tree looks approximately as shown in fig. 2.3 for c = 4 (4 new objects on each
side, 8 changes total).

Slice I is (close to) a full binary tree, slice II consists of mostly of separate non-
branching paths (except for dead-end side branches that immediately terminate
because they contain no changes), one for each change. Slice III contains short
tails of these paths (expected length bounded by a constant) before recursion
terminates.

This seems rather wasteful. Most of the algortihm is spent walking along the
paths in slice II, always comparing digests of sets that differ by only one element.

What we would like is to be able to immediately detect that two sets differ
only in one element and ideally also reconstruct that element. The XOR function
immediately springs to mind. We can define the digest as

Digest({a1, . . . , ak}) := h(a1)⊕ · · · ⊕ h(ak),

where h is a cryptographic hash function. We need h because if we XORred the
original strings (which determine trie location), digests of neighbouring nodes
would be highly correlated.

Now when we have two sets A and B such that A△B = {e} then δ :=
Digest(A)⊕Digest(B) = h(e). However if |A△B| > 1, the δ a useless number.
We need to determine which of these cases ocurred. The party with the extra
element can simply look up δ in a reverse lookup table h(x)→ x.

However, this might yield a false positive. What is the probability of that
happening? Because we presume values of h to behave as independent uniformly
distributed random variables, the digests of any two sets differing in at least
one element should behave as independent random uniformly distributed random
variables. Thus the probability of a accidental collision of δ for a nontrivial
difference with one specific element is close to 1/2g, where g is the digest size.

37

lg c

lg n

`

I

II

III

changes (new leaves) on both sides

Figure 2.3: Recursion tree of Recon1 (algorithm 2.1)

The probability of collision with any element can be estimated using the union
bound as p ≤ n/2g. If we want this to be as collision-resistant as a g-bit hash
function, we need to use a longer hash, specifically one with g′ := g + lg n bits.

If the extra element is on the other side, we must recurse for now and the
other party will inform us in the next round that we should stop any further
recursion.

There is an alternative to simply using a longer hash function, and that is to
add a checksum to each element’s hash as follows:

ElemDigest(x) := h(x) ∥h(h(x)),

Digest({a1, . . . , ak}) := ElemDigest(a1)⊕ · · · ⊕ElemDigest(ak).

This brings the same level of fake positive resistance (probability 1/2g per
comparison) at the cost of more extra bits (g instead of lg n). However, now both
parties can independently detect that |A△B| = 1 by checking if h(δ1) = δ2 (where
δ1 and δ2 are the two halves of the δ string) and stop recursion immediately. This
saves one roundtrip and simplifies implementation. It is not clear which approach
is better, both have their mertis.

The second variant (with another checksum hash) is summarized as algorithm
2.3 and implemented in Filoco.

A similar approach has been independently discovered earlier by Minsky and
Trachtenberg [21]. They use a scheme based on polynomials over finite fields
for pruning branches where the symmetric difference is small. [22] Our solution
achieves comparable asymptotic bounds and practical results (even though per-
haps with worse constant factors) and is much simpler both conceptually and
to implement. They also discuss using XOR for the case of |A△B| = 1. [22,
protocol 1] However, they XOR the original bitstrings from the set instead of

38

Algorithm 2.3 Divide-and-conquer set reconciliation with pruning
1: procedure Digest(A)
2: return h(A) ∥h(h(A))
3: procedure Recon2(A, i = 0)
4: DA ← Digest(A)
5: Send(DA)
6: DB ← Recv()
7: δ ← DA ⊕DB

8: split δ into two halves δ1 and δ2
9: if DA = DB then

10: return ∅
11: else if A = ∅ then
12: return ∅
13: else if DB = Digest(∅) then
14: return A ▷ other side’s set is empty, need to send everything
15: else if h(δ1) = δ2 then ▷ |A△B| = 1
16: if ∃x ∈ A with h(x) = δ1 then ▷ we have the extra element
17: return {x}
18: else ▷ they have the extra element
19: return ∅
20: else if i = ℓ then
21: return A
22: else
23: A0 ← {x ∈ A | xi = 0} ▷ All the elements with i-th bit zero
24: A1 ← {x ∈ A | xi = 1}
25: return Recon2(A0, i− 1) ∪Recon2(A1, i− 1)

39

their hashes, which makes this technique unsuitable for branch pruning because
all the elements under a vertex with depth d have the first d bits in common and
therefore the first d bits of the XOR are all ones or all zeroes, depending on the
number of elements.

Complexity

Intuitively, pruning should cut off all the boring branches in slices II and III and
leave us with O(lg c) expected depth of the recursion tree, which corresponds to
communication complexity O(c lg c). Let’s prove that.

Communication complexity We will have to use a slightly different estima-
tion method. The recursion tree has at most c leaves, with one change under
each. For each change w (a trie leaf present on one side but not other), we
shall estimate the length of the recursion branch leading to that node. We shall
consider all the trie ancestors of the change and for each of them compute the
probability that we recursed from that vertex.

We recurse from a vertex only if there are at least two changes (in total on both
sides) underneath it. There are a few other conditions (for example, recursion
stops if the subset on one side is empty, even if the other party has two changes),
which we shall ignore because we are doing an upper bound. This means that
at least one of the 2c− 1 changes other than the one we are currently examining
must lie under this vertex. Because we consider changes to be independent and
uniformly distributed, the probability of this happening can be easily estimated,
once again using Markov’s inequality:

pd := P[|As△Bs|−{w}] ≤ min(E[|As△Bs|−{w}], 1) = min(E[|As△Bs|]−1, 1) =

= min(c/2d − 1, 1) ≤ min(c/2d, 1),

where d is the depth of the ancestor.
Let’s look at the values of pd by slice. In slice I, 2d ≤ c and the estimate maxes

out at 1. For slices II and III, we get pd ≥ c/2d = 1/2d′ , where d′ := d − lg c is
depth relative to the top of slice II. Now we can easily estimate the length of a
recursion tree branch:

E[Lw] ≤
ℓ∑

d=0
pd = lg c + 1 + 1/2 + 1/4 + · · · ≤ 2 + lg c.

The expected number total number of vertices recursed from is bounded by the
sum of the recursion branch lengths (we count many vertices several times), which
we can estimate using linearity of expectation:

E[K] ≤ E
⎡⎣ ∑

w∈A△B

Lw

⎤⎦ =
∑

w∈A△B

E[Lw] ≤ 2c · (2 + lg c) = 4c + 2c lg c.

This corresponds to 2gc + gc lg c transferred bytes for a g − bit hash (we send
two hash values per vertex, there are at most twice as many vertices visited as
recursed from).

40

Communication rounds In a similar manner, we can estimate the number
of communication rounds, again presuming this algorithm is first transformed
to a breadth-first version in a manner similar to algorithm 2.2. The modified
version is not shown here but can be found in attachment 1, both as a standalone
experiment (in the file experiments/mdsync/hybrid.py) and as a part of Filoco
proper (classes TreeMDSync in mdsync.py and SyncTree in store.py).

For each level of the trie, we will examine the probability recursion gets to
this level. We have at most c recursion branches, each of them traversing level
d with probability pd < c/2d. Using the union bound, the probability of at least
one branch traversing this level is qd < c2/2d. For d < 2 lg c, this bound is larger
than one. For further levels, it forms a geometric sequence. Thus the expected
depth of the recursion tree is E[r] = 1+2 lg c+1+1/2+1/4+· · · < 3+2 lg c. This
is the number of communication rounds required by the breadth-first variant of
algorithm 2.3.

Computational time As for computational time, we can once again organize
the digests into a Merkle-like tree stored on disk and incrementally updated.
Only this time each vertex computes a XOR instead of a cryptographic hash.
Thus we get the same O(lg n) query time and O(ℓ lg n) update time. The total
computational time is then O(c lg c lg n).

As a further optimization, we notice that if the ℓ is larger than 2 lg n, the
bottom levels will be rarely ever used during synchronization. We can thus further
optimize by only storing the to α lg n for an empirically chosen constant 1 ≤ α ≤
2. The missing levels can be computed on-the-fly (for example if the set items are
stored in a SQL database that supports range queries, we can simply enumerate
all the elements under a vertex because they form a contigous segment).

This changes storage requirements to O(n lg n) and update time to O(lg2 n).
For clarity, we summarize the efficiency of both algorithms in tbl. 2.1 (for

128-bit digests).
Experimental results were produced by the experiments/mdsync/prune.py

script in attachment 1.
The “total roundtrip time” and “total transfer time” are synchronization time

estimates based on roundtrip numbers and transfer total from experimental pro-
tocol simulations (no actual time measurements were performed). These are com-
puted for a hypothetical low-quality network with 1 Mbps symmetric throughput
and 500 ms RTT (for example a 3G connection with subpar reception). The to-
tal synchronization time will be probably be close to the maximum of the two
estimates. For any network with significantly better parameters the times will
become imperceptible.

Table 2.1: Comparison of described set reconciliation al-
gorithms

Metric Naive D&C Pruning D&C
total bytes transferred 128c(3 + lg n− lg c) 128c(2 + lg c)

for n = 220 128c(23− lg c) 128c(2 + lg c)
for c = 16 (theor.) 38 kB (1.2 kB p.ch.) 12 kB (0.3 kB p.ch.)
for c = 16 (exper.) 51 kB (1.6 kB p.ch.) 11.1 kB (0.3 kB p.ch.)

41

Metric Naive D&C Pruning D&C
for c = 1024 (theor.) 1.6 MB (0.8 kB p.ch.) 1.5 MB (1.5 kB p.ch.)
for c = 1024 (exper.) 1.6 MB (0.8 kB p.ch.) 650 kB (0.3 kB p.ch.)

communication rounds 3 + lg n + lg c 3 + 2 lg c
for n = 220 23 + lg c 3 + 2 lg c

for c = 16 (theor.) 27 11
for c = 16 (exper.) 8 4
for c = 1024 (theor.) 33 23
for c = 1024 (exper.) 9 8

computational time O(c lg2 n) O(c lg c lg n)
disk storage O(n lg |U |) O(n lg |U |)
update time O(lg |U | lg n) O(lg2 n)
total roundtrip time (proj.)

for c = 16 2 s 1 s
for c = 1024 2.25 s 2 s

total transfer time (proj.)
for c = 16 0.4 s 0.08 s
for c = 1024 12.8 s 5.2 s

In the model situation of n = 220 and c = 16..1024, both algorithms seems
comparable within a factor of two, both theoretically and experimentally. How-
ever, the theoretical bounds are not tight enough to distinguish between the two
algorithms for these parameter values, thus we should give more credence to the
experimental results.

Please note that all the transfer and time estimates cover only the process of
determining which objects each side is missing. After this, we must transfer the
serialized objects themselvers; this is not included in our estimates.

Both algorithms seem usable for our application. However, the pruning al-
gorithm performs better, is only slightly more complex and offers much greater
scalability because its communication complexity and number of rounds do not
depend on n.

2.3 Per-Origin Sequential Streams
Upon further reflection, we actually do not need to solve the fully general set
reconciliation problem. Our instance is rather special in one key factor: each
object is only ever created once, in one store. Therefore, the assumption of set
reconciliation that there is no prior communication between the parties is not
true. If two stores share an object, there must have been prior communication
between each of them and the object’s originating store, albeit possibly indirect.

There are two more important special properties: (1) we always perform full
synchronization (unless the synchronization process is interrupted), partial syn-
chronization is not supported; (2) the number of stores in a realm is expected to
be small (in the order of tens at most).

If we put all these facts together, we can devise a synchronization scheme both
simpler and more efficient than the described reconciliation algorithms.

42

The idea is simple: instead of considering all the object a store has as one big
set, we will split them into several sets based on their originating stores and solve
the reconciliation problem for each of these sets separately.

Now we have a different task: several nodes have copies of a set, which they
synchronize with each other in a disorganized peer-to-peer fashion. But only one
node ever adds new elements to the set! All other nodes must have got their
elements from this originating node, directly or indirectly.

This is rather simple to solve: the originating node will assign created objects
sequence numbers as they are created. All nodes will keep their sets sorted by
these seqence numbers, essentially transforming the problem into one of sequence
reconciliation.

Whenever Alice and Bob want to reconcile their sequences, they simply com-
pare their maximum sequence numbers mA and mB. If mA > mB, Alice sends
all her objects with sequence number greater than mB to Bob (who clearly does
not have them) in increasing sequence number order (this is important). Bobs
appends them to his sequence in the order he recieves them and sends nothing
to Alice. If mA < mB, the same happens in the opposite directions.

We claim this is sufficient to synchronize their sets/sequences. Why? A
simple invariant I holds: the sequence of objects possesed by any node is always
a prefix of the originating node’s sequence. We can prove I by induction. At the
beginning, all sequences are empty and I holds trivially. Two kinds of events can
happen:

• The originating store adds an element at the end of the seqence. This
clearly preserves I.
• Two nodes A and B (for which I holds) synchronize their sequences sA

and sB. We can assume without loss of generality that mA ≥ mB. At the
beginning sA and sB are prefixes of the originator’s sequence sO. Because sB

is a shorter prefix, it is also a prefix of sA. After each object transferred, sB

becomes a longer prefix of sA, and thus still a prefix of sO. sA is unchanged.

This yields a simple synchronization algorithm for complete metadata syn-
chronization:

Algorithm 2.4 Reconciliation using per-origin sequential streams
1: procedure RecvObjects
2: while other side has not signalled EOF do
3: o← RecvSerialized()
4: add o to the local database (at the end of originator(o)’s sequence)
5: procedure SendObjects(MA, MB)
6: for every store s present in both MA and MB do
7: if MA[s] > MB[s] then
8: for every object o with originator(o) = s and seq(o) > MB[s] do
9: Send(Serialize(o))

10: MA = {(id(s), maxseq(s)) | s store}
11: Send(MA)
12: run SendObjects(MA, MB) and RecvObjects() in parallel

43

Thus we can perform synchronization with only one roundtrip and O(#stores)
bytes overhead in addition to whatever is required to transfer the acual objects
missing on the other side.

This leaves the question of why we bother with set reconciliation when a
simpler and more efficient solution exists. There are several reasons:

• We actually discovered it much later than the general set reconciliation
algorithms. This seems strange because at first sight, the idea seems rather
trivial. But it is probably somehow evasive. Not only did we almost miss
it; for example the leading open source synchronization tool Syncthing also
uses a sequence numbering scheme but one that is slightly different and
suffers from the indirect synchronization problem. [23]

• Set reconciliation is an interesting problem by itself. That should be enough
reason for anyone. It also has numerous other applications, both within
file synchronization an elsewhere. For example, it has been used for delta
transfer of files as a replacement of the established rsync algorithm [24, sec.
4.1.2].

• Assigning sequential numbers has some reliability issues described bellow.

Currently, both approaches are implemented in Filoco, with sequence num-
bering being the default. The main reason is surprisingly not the difference in
reconciliation times but the need to keep the reconciliation trie on disk, increasing
both storage overhead and slowing down database updates.

2.3.1 The problem with sequence numbers
Any attempt to assign sequential numbers is potentially problematic. It can hap-
pen that Alice creates an object o1, assigns it a sequence number s and transfers
it to Bob. Then Alice suffers from a power loss before o1 has been flushed to
disk. After reboot, she creates a completely unrelated object o2, which neverthe-
less gets assigned the same sequence number s, because the information about
s being already taken has been lost. Now when Alice synchronizes with Bob,
their maximum sequence numbers for Alice-originated objects will be the same,
namely s. Thus they will mistakenly think their object sets are identical, despite
Alice missing o1 and Bob missing o2.

Several things can be done about this. The simplest is to flush (fsync) local
changes to disk before every synchronization.

If we do not want to do that or do not trust the disk to reliably fullfil the
request (which is known to happen at times), we can instead check that the
common prefix is really the same on both sides.

For example we can store for each prefix of the local object sequence a XOR
of its object IDs. Upon synchronization, Alice and Bob exchange XORs of their
complete sequences, xA and xB, in addition to their maximum sequence numbers
mA ≥ mB. Now Alice can compare xB to her prefix XOR of the corresponding
prefix ending with seqence number mB. If they match, Bob really has the same
objects as are in her prefix and it is sufficient to send the remaining suffix.

Otherwise a different synchronization scheme must be used. For example,
we could perform a binary search on the sequence numbers to find the longest

44

common prefix by comparing corresponding prefix XORs. Then both sides can
simply exchange the remaining suffixes and merge them into their sequences,
updating the neccesary prefix XORs. Presumably the error has occured recently
so the suffixes that need to be fixed should not be long.

45

46

3. Content Synchronization
After metadata synchronization, each store knows which files need to be updated.
Namely any files that the store hosts (or wants to host) and for which there is a
head FCV that the store does not have. Storage records will contain information
about where the data can be obtained.

When a store that can provide the right data is found and contacted, the
transfer itself can begin. There are many ways of transferring incremental file
updates over a network; this is a fairly well-researched problem.

The trivial solution is to simply send over the new version of the file. However,
that is fairly inefficient for when small changes are done to large files. As with
metadata synchronization, ideally, we would like the amount of transferred data
to depend more on the size of the change than on the size of the whole file.
Techniques to achieve this are generally called delta transfer algorithms.

Most delta transfer methods work by somehow splitting the file into blocks on
both sides. The blocks may be of fixed or varying size, aligned, unaligned or even
overlapping, the splitting may be identical or different on the two sides. Then we
the sending party must somehow learn which blocks are already present on the
receiver side as part of the old version of the file – or in some cases, even blocks
from different files are reused.

That is especially useful in the absence of rename detection because then after
a rename, the target file can be reconstructed from blocks of the source file without
retransmitting the data over the network. However, since we have reliable rename
detection, we opted for doing delta transfers of each file separately, isolated from
the others. While cross-file block reuse might still provide some optimizations
because file systems often contain similar files, these are less important and given
the number of files we have to deal with, considering all the blocks in all the files
would be quite hard (although definitely not impossible) to do efficiently.

When it is determined which blocks the receiving party is missing, we simply
send them along with any instructions necessary to reassemble the whole file from
both old and new blocks.

Now the key questions are: (1) how exactly to split files into blocks, (2) how
to determine which blocks the other party already has.

3.1 The Rsync Algorithm
The trivial solution to (1) is to always split the files into fixed-size, aligned blocks.
This technique breaks whenever contents is inserted to or deleted from the file.
Then, block boundaries shift and none of the blocks will match. Some file snychro-
nization tools nevertheless use this approach, for example the already mentioned
Syncthing. [23]

The trivial solution to (2) is for the receiving side to simply send checksums of
its blocks to the sending size. This reduces the transfer requirements by at most
a constant factor because we need to send Θ(file size) checksums. In practice,
however, this is often sufficient, as demonstrated by the success of the rsync
algorithm [25], now a de facto standard for delta transfers.

Rsync splits the old file on the receiving side into fixed-size aligned blocks. For

47

each of these blocks, two different checksums are computed: a “slow” checksum
(a cryptographic hash, which is reliable but expensive to compute) and a “fast”
checksum (that is unreliable but cheap to compute). Now comes the key trick:
the fast checksum is computed using a rolling hash function. That means when
we know the hash for a w-byte substring of the file starting at position i, we
can efficiently (in constant time) use it to compute the hash for a w-byte string
starting at position i + 1. This is often called a “sliding window” algorithm: we
imagine having a “window” w bytes byte wide that we are moving over the file.
Each time we can move it one byte to the right and efficiently recompute the
hash of the string now in the window.

This property does not seem useful when computing hashes of aligned blocks
on the receiver side. However, the sender uses the sliding window property to
compute the fast checksum of w-bytes blocks starting at every possible byte offset
in the file. This allows finding shifted and unaligned blocks.

Now the sending party transfers instructions for reconstructing the file. Each
instruction is either (a) write a given block from the original file to the new file
at a given offset, (b) write these bytes to the new bytes at a given offset (used
for parts of the file not covered by any old blocks, these can be of varying sizes
from a few bytes to the whole file).

The cannonical implementation of the rsync algorithm is a part of the rsync
program [3]. However, rsync has its own protocol and semantics for establishing
connections, authentication, dealing with multiple files, dealing with file paths,
etc., that do not fit well into our design. A more promising implementation of the
algorithm is available in the librsync library. [26] This library implements only
the pure rsync algorithm and leaves all the other aspects, including the logistics
of network communication and filesystem access, up to the application, which
makes it very flexible.

It is the librsync library that was intended to be used for implementing con-
tent synchronization in Filoco, although the implementation was never finished.

3.2 Set Reconciliation Based Methods
We might notice that the structure of block-based synchronization problem is
rather similar to the set reconciliation problem: both sides have some blocks and
Alice wants to send Bob exactly the blocks he does not have.

However, in order for them to use set reconciliation, both of them must split
the file into blocks independently to create the sets to be reconciled. Therefore
we cannot use the rsync trick where Alice’s splitting is dependent on knowledge
of Bob’s blocks.

This can of course be accomplished by the already mentioned fixed aligned
block splitting, which has numerous problems.

An alternative is to determine block boundaries based not on file offsets but
on content. For example we can once again use a rolling hash and make a block
boundary whenever the hash value is smaller than some fixed value. Now when
the two files share a segment that has at least two block boundaries in it, the
block between the boundaries will be split indentically on both sides, reagardless
of the offset. If we consider the hash values to be essentially random, this gives
us expected block length ℓ/m, where ℓ is the fixed limit and m is the maximum

48

value of the hash function. To prevent extreme cases, we should also bound the
minimum and maximum length of the block and if necessary, cut in non-standard
places.

The use of set reconciliation and content-dependent block splitting for file
synchronization has been thoroughly examined by Marco Gentili in his bachelor
thesis. [24]

3.3 Filesystem Access
A general-purpose file synchronizer, possibly running in the background, has to
deal with the file system being concurrently changed. For metadata changes
(creates, renames and deletes), this has been already tackled in chapter 1.

However, file contents can also change, and do so in two ways. Some programs
write to directly to the destination file, while others first create a temporary file,
write the new version to it and then replace the original with an atomic rename.

When a file is changed while it is being synchronized, the synchronization will
probably not give meaningful results. This is not only because of race conditions
involved in the synchronization algorithms (for example we compute a checksum
of a block and then the block changes). Even a simple whole-file copy is riddled
with possible race conditions. For example, after you have copied half the file,
someone may concurrently make one change and the beginning and then one
change at the end. Your copy will contain the unchanged beginning and the
changed end, a version of the file that was never present in the original.

This is far less far-fetched than it may seem. For example, a program might
first change some area in the file’s header to remove a pointer to some records
at the end of the file and then physically remove the records at the end, perhaps
overwriting them with something else. In your copy, the pointer in the header
would be still present, now pointing to garbage data.

There is probably no way to recover from such situations. The only way to
correctly make a copy of a file is when it does not change during the copy/transfer
process. There are two ways this might be achieved: (1) lock the file in some
fashion to prevent other programs from accessing it, (2) make the copy in a
transactional fashion. The kind of locking needed for (1) is more or less impossible
for locking.

As for (2), we can reuse the oldest trick in our book, namely comparing
before/after mtimes. First we remember the mtime of the source file, then we
perform the copy/transfer into a temporary file, then we check the source mtime
again. If it has not changed, we consider the copy correct, otherwise we start
over.

When synchronizing over a network, we can perform the complete synchro-
nization protocol reading from the original files, while the receiver saves the result
into a temporary file. At the end, if the files on neither side changed according to
mtime comparisons, the parties agree to commit the transaction, otherwise they
retry the whole protocol again.

A different kind of race condition might occur on the receiver side. Between
the moment that we decided the original files have not changed and we should
commit the transaction and the moment we actually replace the target file using
an atomic rename, the target file might be changed. In this case, we would

49

replace the target file with a consistent version but lose some recent changes.
With a normal rename, this cannot be prevented. However, on Linux we can
use the extended renameat2 syscall with the RENAME EXCHANGE flag. This causes
the kernel to atomically exchange the temporary file with the target file. If any
concurrent modifications were made during the brief window, they will now be
available in the location of the temporary file. We could record this as a normal
version conflict and store both verions of the file.

50

4. Implementation
A sketch of Filoco implementation is provided as attachment 1 in the electronic
version of this thesis. Due to a limited amount of time, the implementation is in
many regards incomplete and currently serves more as a proof of concept of some
of the techniquest discussed here than a piece of software that would be actually
useful for synchronizing one’s files.

Most of the implementation is a rather straightforward application of the
algorithms and methods described. Here we will pinpoint only a few interesting
technical aspects.

4.1 Metadata Storage
Stores are odinary directories that contain a special subfolder named .filoco.
This contains all the Filoco-specific metadata. Most of the metadata is stored in
and SQLite [27] database called .filoco/meta.sqlite. This database is com-
posed of two logical parts:

• Local filesystem metadata, used to store the last known filesystem state to
compare against when scanning the file system for changes.

– The inodes table contains information about every inode known to
Filoco, including its inode number, file handle (used to identify in-
odes as discussed in sec. 1.1.5) and the FOB, FLV and FCV currently
associated with this inode, if any.

– The links table stores information about directory entries, with par-
ent inode identifier, child parent identifier and name for each.

• Sychronized metadata, that model more or less one-to-one the structure
described in sec. 2.1.1.

– The syncables table holds information common to all object types,
such as originating inodes and sequence numbers (for per-origin se-
quence number synchronization) or position synchronization trie key
(for set-reconciliation-based synchronization).

– The fobs, flvs, fcvs and srs tables hold information specific to the
individual object files.

We heavily rely on SQLite’s atomic transaction support. For example, when a
file’s mtime has changed, we record the new mtime and the newly created working
FCV in the same transaction so that a power failure does not cause changes to be
forgotten. We also update the synchronization digest trie in the same transaction
as inserting a new object if the set reconciliation scheme is used. This ensures
that the precomputed subset digests are never out of date.

SQLite is often accused of being “slow”. This however depends heavily on the
way one uses it. By default, it performs an fsync at the end of every transaction,
which definitely causes issues. This can be helped by grouping updates to large
enough transactions. As most operations we do are bulk anyway (filesystem

51

scanning, metadata synchronization), it is not a problem to make transactions
for say every 5000 scanned/transferred items.

Where this does not help is online change detection, because there changes
come separately rather than in bulk. In this case, switching SQLite to the so-
called WAL (Write-Ahead Log) mode [28] supported by newer version that im-
plements transactions in a different way and does not require a sync after every
signle transaction.

Another big scalability issue is with filesystem scanning, because it has to
read the file system and update the metadata database, causing seeks between
scanned inodes and database blocks and thus rendering all our precious scan
optimizations useless. This can be partially helped by forcing SQLite to cache
more changes in memory and increasing its cache size.

However, SQLite’s cache management is not perfect and it starts to lose scal-
ability with large enough databases. What we would really want it to interleave
periods of pure filesystem scanning with periods of pure database updates, each
at least tens of seconds long.

The easiest way to do this is to cache scan results in separate in-program data
structures and only give them to SQLite in batches. However, during scan, we
also need to read the old inode data from sqlite to compare against, which can
also be slow for larger databases.

The easiest solution seems to be to load all inode information from the database
to memory on start, then scan the file system and make SQLite updates in
batches. This is more or less what our check helper program does.

4.2 Basic Structure
The implementation comprises of several independent programs. They currently
have to be run manually every time the user wishes to perform an action such
as rescanning the file system or synchronizing two stores. Nothing happens au-
tomatically in the background, with the exception of fanotify-based filesystem
online filesystem watching in scan.py.

All of the programs directly access the underlying SQLite database and though
SQLite performs some locking, it is not recommended to run any two of them at
the same time (with the exception of scan.py in fanotify live watch mode).

These are:

• init.py – creates a new Filoco store
• scan.py – performs online and/or offline scanning of the file system and

updates metadata accordingly
• check helper.c is a helper program in C used by scan.py to make incre-

mental rescans faster
• mdsync.py – performs metadata synchronization between two stores
• mdapply.py – applies metadata updates received from remote stores (moves

and renames) to the local file system
• dsync.py – performs file content synchronization (unfinished)

More information about installing and using these programs can be found in
the README.md file in attachment 1.

52

Conclusion
We set out with a goal of designing and implementing an efficient, scalable, robust,
flexible, and secure file synchronization (tool)kit for advanced users. Unsurpris-
ingly, we have stopped quite far from this mouthful of a goal, due to mainly time
constraints. We present a collection of solutions to some important subproblems
lying on the way to our target rather than a finished piece of software.

Despite the limited scope, we have touched on a fairly broad range of top-
ics, from filesystem architecture to kernel development and randomized algo-
rithms. The following are the most important original contributions of this work,
in roughly the order they appear in the text:

• A mechanism for reliable rename detection during file system scanning,
based on inode numbers and file handles. This in turn allows efficient
synchronization of directory trees when directories with large subtrees are
moved or renamed. A proof of concept implementation of this mechanism
has been provided.

• A mechanism for speeding up incrementally scanning a file system for
changes about 2 to 8 times by accessing inodes using file handles in in-
ode number order, including experimental measurements.

• A patch to the Linux kernel that extends the fanotify change notification
interface with the ability to report directory modification events (creating,
renaming, moving and deleting directory entries), a feature for which there
has been great demand for since the creation of fanotify in 2009 but almost
no solution attempts.

• The concept of placeholder inodes to represent files not available locally in
a way that allows seeing and manipulating them with arbitrary file manage-
ment tools. A partial proof of concept implementation has been provided.

• An independently discovered simpler version of the Partition-Recon set
reconciliation algorithm (called divide and conquer with pruning in our text)
first described by Minsky and Trachtenberg in 2002 [21]. Elementary proofs
of some complexity bounds, experimental simulations of the algorithm and
a full implementation with on-disk storage of the digest tree have been
provided.

• A simple algorithm for peer-to-peer synchronization among a small set of
nodes with single roundtrip overhead using per-origin sequence numbers.

From among our stated priorities, we ended up focusing mostly on efficiency,
scalability and robustness, especially with regard to the change detection and
metadata synchronization aspects of file synchronization, while touching only
briefly and indirectly on file content synchronization and security.

There is a lot of room for future work. Partly in putting all of the techniques
described here together into a complete tool suitable for daily use, partly in
future research into areas neglected here, especially content synchronization and
security.

53

54

Bibliography
1. Úvod do matfyzáka [online] [visited on 2017-07-17]. Available from: http:

//michal.bdnet.cz/matfyzak.html.
2. The Linux man-pages project. path resolution(7) [online] [visited on 2017-

07-20]. Available from: http://man7.org/linux/man-pages/man7/path_
resolution.7.html.

3. TRIDGELL, Andrew; MACKERRAS, Paul, et al. rsync documentation.
rsync(1) [online] [visited on 2017-07-20]. Available from: http://download.
samba.org/pub/rsync/rsync.html.

4. TS’O, Theodore. The Linux Kernel Mailing List archive. Re: readdir loses
renamed files [online] [visited on 2017-07-20]. Available from: https : / /
lkml.kernel.org/r/20041025123722.GA5107%40thunk.org.

5. The Linux man-pages project. open by handle at(2) [online] [visited on 2017-
07-20]. Available from: http://man7.org/linux/man-pages/man2/open_
by_handle_at.2.html.

6. CALLAGHAN, Brent; PAWLOWSKI, Brian; STAUBACH, Peter. NFS Ver-
sion 3 Protocol Specification [Internet Requests for Comments]. RFC Editor,
1995. ISSN 2070-1721. Available also from: http://www.rfc-editor.org/
rfc/rfc1813.txt. RFC.

7. The Linux man-pages project. xattr(7) [online] [visited on 2017-07-20]. Avail-
able from: http://man7.org/linux/man-pages/man7/xattr.7.html.

8. Linux kernel source tree. ext2.txt [online] [visited on 2017-07-20]. Available
from: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux.git/tree/Documentation/filesystems/ext2.txt?id=v4.10#
n85.

9. The Linux man-pages project. inotify(7) [online] [visited on 2017-07-20].
Available from: http://man7.org/linux/man- pages/man7/inotify.
7.html.

10. The Linux man-pages project. fanotify(7) [online] [visited on 2017-07-20].
Available from: http://man7.org/linux/man-pages/man7/fanotify.7.
html.

11. LARSSON, Alexander. The Linux Kernel Mailing List archive. Re: Issues
with using fanotify for a filesystem indexer [online] [visited on 2017-07-20].
Available from: https://lkml.kernel.org/r/1238272705.23703.77.
camel%40fatty.

12. ŠTĚDRONSKÝ, Filip. The Linux Kernel Mailing List archive. [RFC 1/2]
fanotify: new event FAN MODIFY DIR [online] [visited on 2017-07-20].
Available from: https://marc.info/?m=148944656130682.

13. GOLDSTEIN, Amir. The Linux Kernel Mailing List archive. [RFC][PATCH
0/6] fanotify: super block root watch [online] [visited on 2017-07-20]. Avail-
able from: https://lkml.kernel.org/r/1489411223- 12081- 1- git-
send-email-amir73il%40gmail.com.

55

http://michal.bdnet.cz/matfyzak.html
http://michal.bdnet.cz/matfyzak.html
http://man7.org/linux/man-pages/man7/path_resolution.7.html
http://man7.org/linux/man-pages/man7/path_resolution.7.html
http://download.samba.org/pub/rsync/rsync.html
http://download.samba.org/pub/rsync/rsync.html
https://lkml.kernel.org/r/20041025123722.GA5107%40thunk.org
https://lkml.kernel.org/r/20041025123722.GA5107%40thunk.org
http://man7.org/linux/man-pages/man2/open_by_handle_at.2.html
http://man7.org/linux/man-pages/man2/open_by_handle_at.2.html
http://www.rfc-editor.org/rfc/rfc1813.txt
http://www.rfc-editor.org/rfc/rfc1813.txt
http://man7.org/linux/man-pages/man7/xattr.7.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/ext2.txt?id=v4.10#n85
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/ext2.txt?id=v4.10#n85
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/filesystems/ext2.txt?id=v4.10#n85
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/inotify.7.html
http://man7.org/linux/man-pages/man7/fanotify.7.html
http://man7.org/linux/man-pages/man7/fanotify.7.html
https://lkml.kernel.org/r/1238272705.23703.77.camel%40fatty
https://lkml.kernel.org/r/1238272705.23703.77.camel%40fatty
https://marc.info/?m=148944656130682
https://lkml.kernel.org/r/1489411223-12081-1-git-send-email-amir73il%40gmail.com
https://lkml.kernel.org/r/1489411223-12081-1-git-send-email-amir73il%40gmail.com

14. HESS, Joey. git-annex [online] [visited on 2017-07-19]. Available from: http:
//git-annex.branchable.com/.

15. CHACON, Scott; STRAUB, Ben. Git Internals: Git Objects. In: Pro git.
Apress, 2014. Available also from: https://git-scm.com/book/en/v2/
Git-Internals-Git-Objects.

16. KHANNA, Sanjeev; KUNAL, Keshav; PIERCE, Benjamin. A formal inves-
tigation of diff3. FSTTCS 2007: Foundations of Software Technology and
Theoretical Computer Science. 2007, pp. 485–496. Available also from: http:
//www.cis.upenn.edu/˜bcpierce/papers/diff3-short.pdf.

17. FIDGE, Colin J. Timestamps in message-passing systems that preserve the
partial ordering. 1987. Available also from: http://zoo.cs.yale.edu/
classes/cs426/2012/lab/bib/fidge88timestamps.pdf.

18. MATTERN, Friedemann et al. Virtual time and global states of distributed
systems. Parallel and Distributed Algorithms. 1989, vol. 1, no. 23, pp. 215–
226. Available also from: http://zoo.cs.yale.edu/classes/cs426/2012/
lab/bib/mattern88virtual.pdf.

19. MERKLE, Ralph C. A digital signature based on a conventional encryp-
tion function. In: Conference on the Theory and Application of Crypto-
graphic Techniques. 1987, pp. 369–378. Available also from: http://link.
springer.com/content/pdf/10.1007/3-540-48184-2_32.pdf.

20. MINSKY, Yaron; TRACHTENBERG, Ari. Efficient reconciliation of un-
ordered databases. 1999. Available also from: https://ecommons.cornell.
edu/bitstream/handle/1813/7432/99-1778.pdf. Technical report. Cor-
nell University.

21. MINSKY, Yaron; TRACHTENBERG, Ari. Practical set reconciliation. In:
40th Annual Allerton Conference on Communication, Control, and Com-
puting. 2002, vol. 248. Available also from: https://gnunet.org/sites/
default/files/practical.pdf.

22. MINSKY, Yaron; TRACHTENBERG, Ari; ZIPPEL, Richard. Set reconcili-
ation with nearly optimal communication complexity. IEEE Transactions on
Information Theory. 2003, vol. 49, no. 9, pp. 2213–2218. Available also from:
https://ecommons.cornell.edu/bitstream/handle/1813/5803/2000-
1813.ps.

23. Syncthing documentation. Block Exchange Protocol v1 [online] [visited on
2017-07-19]. Available from: https://docs.syncthing.net/specs/bep-
v1.html.

24. GENTILI, Marco. Set Reconciliation and File Synchronization Using In-
vertible Bloom Lookup Tables. 2015. Available also from: https://dash.
harvard.edu/bitstream/handle/1/14398536/GENTILI-SENIORTHESIS-
2015.pdf. Harvard University.

25. TRIDGELL, Andrew; MACKERRAS, Paul, et al. The rsync algorithm.
1996. Available also from: https://openresearch-repository.anu.edu.
au/bitstream/1885/40765/3/TR-CS-96-05.pdf. Technical report. The
Australian National University.

56

http://git-annex.branchable.com/
http://git-annex.branchable.com/
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf
http://www.cis.upenn.edu/~bcpierce/papers/diff3-short.pdf
http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf
http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf
http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/mattern88virtual.pdf
http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/mattern88virtual.pdf
http://link.springer.com/content/pdf/10.1007/3-540-48184-2_32.pdf
http://link.springer.com/content/pdf/10.1007/3-540-48184-2_32.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/7432/99-1778.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/7432/99-1778.pdf
https://gnunet.org/sites/default/files/practical.pdf
https://gnunet.org/sites/default/files/practical.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/5803/2000-1813.ps
https://ecommons.cornell.edu/bitstream/handle/1813/5803/2000-1813.ps
https://docs.syncthing.net/specs/bep-v1.html
https://docs.syncthing.net/specs/bep-v1.html
https://dash.harvard.edu/bitstream/handle/1/14398536/GENTILI-SENIORTHESIS-2015.pdf
https://dash.harvard.edu/bitstream/handle/1/14398536/GENTILI-SENIORTHESIS-2015.pdf
https://dash.harvard.edu/bitstream/handle/1/14398536/GENTILI-SENIORTHESIS-2015.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/40765/3/TR-CS-96-05.pdf

26. POOL, Martin et al. librsync [online] [visited on 2017-07-21]. Available from:
https://librsync.github.io/.

27. SQLite [online] [visited on 2017-07-21]. Available from: http://sqlite.
org/.

28. SQLite documentation. Write-Ahead Logging [online] [visited on 2017-07-
21]. Available from: https://sqlite.org/wal.html.

57

https://librsync.github.io/
http://sqlite.org/
http://sqlite.org/
https://sqlite.org/wal.html

58

List of Abbreviations
FCV – file content version (sec. 2.1.1).
FLV – FOB location version (sec. 2.1.1).
FOB – filesystem object (sec. 2.1.1).
IID – inode identifier (sec. 1.1.5).
mtime – an inode’s last modification time, as reported by the lstat syscall
NFS – the Network File System [6]
OFD – open file description, in internal kernel structure describing an open file
RTT – network round-trip time (i.e., what ping measures)
syscall – system call, a function implemented by the kernel that can be invoked
from user space

59

60

A. Attachments
Attachment 1 (filoco-0.1.tar.gz) is a part of the electronic version of this
thesis. It contains the source code of the Filoco implementation sketch, sev-
eral experiments and proofs of concepts, and the FANOTIFY MODIFY DIR kernel
patches.

61

62

	Introduction
	Change Detection
	Offline Change Detection
	The anatomy of linux filesystems
	Change detection in a single file
	Scanning a single directory
	Identifying inodes
	Scanning a Directory Tree

	Online Change Detection
	Inotify
	Fanotify
	The FAN_MODIFY_DIR kernel patch
	Amir Goldstein's fanotify patches

	Metadata Synchronization
	Metadata Model
	Detailed metadata structure
	Versioning and conflict resolution
	Alternative versioning: vector clocks
	Working versions
	Placeholder inodes

	The Set Reconciliation Problem
	Divide and conquer
	Divide and conquer with pruning

	Per-Origin Sequential Streams
	The problem with sequence numbers

	Content Synchronization
	The Rsync Algorithm
	Set Reconciliation Based Methods
	Filesystem Access

	Implementation
	Metadata Storage
	Basic Structure

	Conclusion
	List of Abbreviations
	Attachments

